pandas函数 apply、iterrows、iteritems、groupyby

本文介绍了PandasDataFrame的apply方法,用于对数据进行自定义函数处理,如沿行或列求和、取对数。同时展示了如何计算BMI指数,使用agg进行聚合操作,以及利用iterrows和iteritems遍历数据。此外,还提到了groupby功能,用于数据分组和聚合。
摘要由CSDN通过智能技术生成

apply

DataFrame.apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwds)
  • func 代表的是传入的函数或 lambda 表达式;
  • axis 参数可提供的有两个,该参数默认为0/列
    0 或者 index ,表示函数处理的是每一列;
    1 或 columns ,表示处理的是每一行;
  • raw ;bool 类型,默认为 False;
    False ,表示把每一行或列作为 Series 传入函数中;
    True,表示接受的是 ndarray 数据类型;
    在这里插入图片描述
# 沿着0轴求和
data[["height","weight","age"]].apply(np.sum, axis=0)# 沿着0轴取对数
data[["height","weight","age"]].apply(np.log, axis=0)

在这里插入图片描述
在这里插入图片描述

def BMI(series):
    weight = series["weight"]
    height = series["height"]/100
    BMI = weight/height**2
    return BMI
​
data["BMI"] = data.apply(BMI,axis=1)

在这里插入图片描述

agg

DataFrame.agg(func=None, axis: 'Axis' = 0, *args, **kwargs)

在这里插入图片描述

对每行进行处理

DataFrame.iterrows() 

在这里插入图片描述

每列的循环处理

DataFrame.iteritems()

iteritems可以将DataFrame对象的列
在这里插入图片描述

groupby

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False)

GroupBy对象可以通过groups属性访问分组的键的名称和属于该组的索引
在这里插入图片描述
GroupBy对象可以通过get_group获取指定的对象
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值