目录
4.2.3 自定义存储 offset——把offset和数据通过事务存入mysql,保证了数据不丢失以及不重复消费
3)onAcknowledgement(RecordMetadata, Exception)
4.1 Producer API
4.1.1 消息发送流程
Kafka 的 Producer 发送消息采用的是 异步发送的方式。在消息发送的过程中,涉及到了两个线程 ——main 线程和 Sender 线程,以及 一个线程共享变量 ——RecordAccumulator。
- main 线程将消息发送给 RecordAccumulator
- Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka broker。
KafkaProducer 发送消息流程
- RecordAccumulator——一个线程共享变量
- Interceptors——拦截器
- Serializer——序列化器
- Partitioner——分区器
- sender线程——获取数据,发送给kafka
相关参数:
batch.size :只有数据积累到 batch.size 之后,sender 才会发送数据。
linger.ms :如果数据迟迟未达到 batch.size,sender 等待 linger.time 之后就会发送数据。
4.1.2 异步 ProducerRecord
1 )导入依赖
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
</dependency>
2)编写代码
需要用到的类:
- KafkaProducer:需要创建一个生产者对象,用来发送数据
- ProducerConfig:获取所需的一系列配置参数
- ProducerRecord:每条数据都要封装成一个 ProducerRecord 对象
不带回调的API测试
public class DemoApplication {
public static void main(String[] args) {
// 创建kafka生产者配置信息
var props = new Properties();
// kafka 集群,broker-list
// 发送消息的ip地址,如果是wsl,那么和windows的ip地址不同,需要注意
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "0.0.0.0:9092");
/* acks "acks" 选项表示kafka 的ack级别:
acks=0 意味着producer永远不会等待任何一个来自broker的ack,意味着不需要任何确实,发送及以为着成功。
acks=1 意味着在leader replica已经接收到数据后,producer会得到一个ack,这个选项对速度与安全性做一个平衡,但是不需要等其他副本确认,如果发生leader挂了,其他副本还没来得及同步,这时就会发生数据丢失的情况。
acks=all意味着在所有的ISR都接收到数据后,producer才得到一个ack。这个选项提供了最好的持久性,只要还有一个replica存活,那么数据就不会丢失,但是相应的吞吐量会受到影响 */
props.put(ProducerConfig.ACKS_CONFIG, "all");
// 重试次数 "retries"
props.put(ProducerConfig.RETRIES_CONFIG, 1);
// 批次大小
props.put("batch.size", 16384);
// 等待时间
props.put("linger.ms", 1);
// RecordAccumulator 缓冲区大小
props.put("buffer.memory", 33554432);
// Key, Value的序列化类
props.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 100; i++) {
//向topic发送消息
producer.send(new ProducerRecord<>("first",
Integer.toString(i), Integer.toString(i)));
}
// close方法会将内存中的数据清掉,进行资源回收
producer.close();
}
}
带回调函数的 API 测试
回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别
- RecordMetadata
- Exception
如果 Exception 为 null,说明消息发送成功,如果Exception 不为 null,说明消息发送失败。
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。
public class DemoApplication {
public static void main(String[] args) throws ExecutionException,
InterruptedException {
//创建kafka生产者配置信息
var props = new Properties();
//kafka 集群,broker-list
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.112:9092");
//acks
props.put(ProducerConfig.ACKS_CONFIG, "all");
//重试次数 "retries"
props.put(ProducerConfig.RETRIES_CONFIG, 1);
//批次大小
props.put("batch.size", 16384);
//等待时间
props.put("linger.ms", 1);
//RecordAccumulator 缓冲区大小
props.put("buffer.memory", 33554432);
//Key, Value的序列化类
props.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 100; i++) {
//向topic发送消息
producer.send(new ProducerRecord<String, String>("first",
Integer.toString(i), Integer.toString(i)), new Callback() {
//回调函数,该方法会在 Producer 收到 ack 时调用,为异步调用
@Override
public void onCompletion(RecordMetadata metadata,
Exception exception) {
if (exception == null) {
System.out.println("success->" +
metadata.offset());
} else {
exception.printStackTrace();
}
}
});
}
//close方法会将内存中的数据清掉,进行资源回收
producer.close();
}
}
生产者分区策略测试
ProducerRecord方法中,可以指定向某个分区中发送消息。下图为api:
public class DemoApplication {
public static void main(String[] args) throws ExecutionException,
InterruptedException {
//创建kafka生产者配置信息
var props = new Properties();
//kafka 集群,broker-list
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.112:9092");
//acks
props.put(ProducerConfig.ACKS_CONFIG, "all");
//重试次数 "retries"
props.put(ProducerConfig.RETRIES_CONFIG, 1);
//批次大小
props.put("batch.size", 16384);
//等待时间
props.put("linger.ms", 1);
//RecordAccumulator 缓冲区大小
props.put("buffer.memory", 33554432);
//Key, Value的序列化类
props.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 10; i++) {
//向topic发送消息
producer.send(new ProducerRecord<String, String>("first", 0,
Integer.toString(i), Integer.toString(i)), new Callback() {
//回调函数,该方法会在 Producer 收到 ack 时调用,为异步调用
@Override
public void onCompletion(RecordMetadata metadata,
Exception exception) {
if (exception == null) {
System.out.println(metadata.partition() + "----" +
metadata.offset());
} else {
exception.printStackTrace();
}
}
});
}
//close方法会将内存中的数据清掉,进行资源回收
producer.close();
}
}
4.1.3 同步send API
同步发送的意思就是,一条消息发送之后,会阻塞当前线程,直至返回 ack。
由于 send 方法返回的是一个 Future 对象,根据 Futrue 对象的特点,我们也可以实现同步发送的效果,只需在调用 Future 对象的 get 方发即可。
public class DemoApplication {
public static void main(String[] args) throws ExecutionException,
InterruptedException {
//创建kafka生产者配置信息
var props = new Properties();
//kafka 集群,broker-list
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.112:9092");
//acks
props.put(ProducerConfig.ACKS_CONFIG, "all");
//重试次数 "retries"
props.put(ProducerConfig.RETRIES_CONFIG, 1);
//批次大小
props.put("batch.size", 16384);
//等待时间
props.put("linger.ms", 1);
//RecordAccumulator 缓冲区大小
props.put("buffer.memory", 33554432);
//Key, Value的序列化类
props.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 100; i++) {
producer.send(new ProducerRecord<String, String>("first",
Integer.toString(i), Integer.toString(i))).get();
}
//close方法会将内存中的数据清掉,进行资源回收
producer.close();
}
}
4.2 Consumer API
Consumer 消费数据时的可靠性是很容易保证的,因为数据在 Kafka 中是持久化的,故不用担心数据丢失问题。
由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。
所以 offset 的维护是 Consumer 消费数据是必须考虑的问题。
4.2.1 自动提交 offset
需要用到的类:
- KafkaConsumer:需要创建一个消费者对象,用来消费数据
- ConsumerConfig:获取所需的一系列配置参数
- ConsuemrRecord:每条数据都要封装成一个 ConsumerRecord 对象
为了使我们能够专注于自己的业务逻辑,Kafka 提供了自动提交 offset 的功能。自动提交 offset 的相关参数:
- enable.auto.commit :是否开启自动提交 offset 功能
- auto.commit.interval.ms :自动提交 offset 的时间间隔
以下为自动提交 offset 的代码:
public class DemoApplication {
public static void main(String[] args) {
//创建kafka消费者配置信息
var props = new Properties();
//kafka 集群,broker-list
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.112:9092");
// 消费者组
props.put(ConsumerConfig.GROUP_ID_CONFIG, "test1");
// 开启自动提交。提交offset
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
// 自动提交(提交offset)的延时
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
// 反序列化
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringDeserializer");
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
// 主题订阅,可以订阅多个
consumer.subscribe(Arrays.asList("first"));
while (true) {
ConsumerRecords<String, String> records =
consumer.poll(100);
for (ConsumerRecord<String, String> record : records)
System.out.printf("hello");
}
//SpringApplication.run(DemoApplication.class, args);
}
}
4.2.2 手动交 提交 offset
虽然自动提交 offset 十分简介便利,但由于其是基于时间提交的,开发人员难以把握offset 提交的时机。
因此 Kafka 还提供了手动提交 offset 的 API。
手动提交 offset 的方法有两种:
- commitSync(同步提交)
- commitAsync(异步提交)
两者的相同点是,都会将次本次 poll 的一批数据最高的偏移量提交;
不同点是,commitSync 阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而 commitAsync 则没有失败重试机制,故有可能提交失败。
1 )同步提交 offset——commitSync
由于同步提交 offset 有失败重试机制,故更加可靠,以下为同步提交 offset 的示例。
public class DemoApplication {
public static void main(String[] args) {
//创建kafka消费者配置信息
var props = new Properties();
//kafka 集群,broker-list
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.112:9092");
// 消费者组
props.put(ConsumerConfig.GROUP_ID_CONFIG, "test1");
// 关闭自动提交。提交offset
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
// 自动提交(提交offset)的延时
// props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
// 反序列化
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringDeserializer");
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
// 主题订阅,可以订阅多个
consumer.subscribe(Arrays.asList("first"));
while (true) {
ConsumerRecords<String, String> records =
consumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("hello");
}
//同步提交,当前线程会阻塞直到 offset 提交成功!!!!!!!!!!!!!!
consumer.commitSync();
}
//SpringApplication.run(DemoApplication.class, args);
}
}
2 )异步提交 offset
虽然同步提交 offset 更可靠一些,但是由于其会阻塞当前线程,直到提交成功。因此吞吐量会收到很大的影响。
因此更多的情况下,会选用异步提交 offset 的方式。以下为异步提交 offset 的示例:
public class DemoApplication {
public static void main(String[] args) {
//创建kafka消费者配置信息
var props = new Properties();
//kafka 集群,broker-list
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.112:9092");
// 消费者组
props.put(ConsumerConfig.GROUP_ID_CONFIG, "test1");
// 关闭自动提交。提交offset
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
// 自动提交(提交offset)的延时
// props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
// 反序列化
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringDeserializer");
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
// 主题订阅,可以订阅多个
consumer.subscribe(Arrays.asList("first"));
while (true) {
ConsumerRecords<String, String> records =
consumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("hello");
}
//异步提交
consumer.commitAsync(new OffsetCommitCallback() {
@Override
public void onComplete(Map<TopicPartition,
OffsetAndMetadata> offsets, Exception exception) {
if (exception != null) {
System.err.println("Commit failed for" + offsets);
}
}
});
}
//SpringApplication.run(DemoApplication.class, args);
}
}
3 ) 数据漏消费和重复消费分析
无论是同步提交还是异步提交 offset,都有可能会造成数据的漏消费或者重复消费。
- 先提交 offset 后消费,有可能造成数据的漏消费;
- 先消费后提交 offset,有可能会造成数据的重复消费。
4.2.3 自定义存储 offset——把offset和数据通过事务存入mysql,保证了数据不丢失以及不重复消费
Kafka 0.9 版本之前,offset 存储在 zookeeper,0.9 版本及之后,默认将 offset 存储在 Kafka的一个内置的 topic 中。除此之外,Kafka 还可以选择自定义存储 offset。
offset 的维护是相当繁琐的,因为需要考虑到消费者的 Rebalace。
当有新的消费者加入消费者组、已有的消费者推出消费者组或者所订阅的主题的分区发生变化,就会触发到分区的重新分配,重新分配的过程叫Rebalance。
消费者发生 Rebalance 之后,每个消费者消费的分区就会发生变化。
因此消费者要首先要获取到自己被重新分配到的分区,并且定位到每个分区最近提交的 offset 位置继续消费。
要实现自定义存储 offset,需要借助 ConsumerRebalanceListener,以下为示例代码,其中提交和获取 offset 的方法,需要根据所选的 offset 存储系统自行实现。
public class DemoApplication {
private static Map<TopicPartition, Long> currentOffset = new HashMap<>();
public static void main(String[] args) {
//创建kafka消费者配置信息
var props = new Properties();
//kafka 集群,broker-list
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.112:9092");
// 消费者组
props.put(ConsumerConfig.GROUP_ID_CONFIG, "test1");
// 关闭自动提交。提交offset
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
// 自动提交(提交offset)的延时
// props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
// 反序列化
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringDeserializer");
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
// 主题订阅,可以订阅多个
consumer.subscribe(Arrays.asList("first"), new ConsumerRebalanceListener() {
// 该方法会在 Rebalance 之前调用
@Override
public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
commitOffset(currentOffset);
}
// 该方法会在 Rebalance 之后调用
@Override
public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
currentOffset.clear();
for (TopicPartition partition : partitions) {
//定位到最近提交的 offset 位置继续消费
consumer.seek(partition, getOffset(partition));
}
}
});
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("hello");
}
//异步提交
commitOffset(currentOffset);//异步提交
}
//SpringApplication.run(DemoApplication.class, args);
}
// 获取某分区的最新 offset
private static long getOffset(TopicPartition partition) {
return 0;
}
// 提交该消费者所有分区的 offset
private static void commitOffset(Map<TopicPartition, Long> currentOffset) {
}
}
4.3 自定义 Interceptor——生产者使用
4.3.1 拦截器(interceptor)原理
Kafka拦截器分为生产者拦截器和消费者拦截器
- 生产者拦截器:允许在发送消息前以及消息提交成功后植入拦截逻辑
- 消费者拦截器:允许在消费消息前以及提交位移后植入拦截逻辑
生产者拦截器
public interface ProducerInterceptor<K, V> extends Configurable {
// 消息发送之前
public ProducerRecord<K, V> onSend(ProducerRecord<K, V> record);
// 消息成功提交或发送失败之后,onAcknowledgement要早于callback
// onAcknowledgement和onSend不是在同一个线程中被调用,需要保证线程安全
// onAcknowledgement在Producer发送的主路径中,避免嵌入太重的逻辑,否则会影响TPS
public void onAcknowledgement(RecordMetadata metadata, Exception exception);
}
消费者拦截器
public interface ConsumerInterceptor<K, V> extends Configurable {
// 消息返回给Consumer之前(即开始正式处理消息之前)
public ConsumerRecords<K, V> onConsume(ConsumerRecords<K, V> records);
// Consumer提交位移之后
public void onCommit(Map<TopicPartition, OffsetAndMetadata> offsets);
}
Kafka拦截器支持链式调用,Kafka会按照添加顺序依次执行拦截器逻辑
Intercetpor 的实现接口是org.apache.kafka.clients.producer.ProducerInterceptor,其定义的方法包括:
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", StringSerializer.class.getName());
props.put("value.serializer", StringSerializer.class.getName());
List<String> interceptors = Lists.newArrayList();
interceptors.add(AddTimeStampInterceptor.class.getCanonicalName());
interceptors.add(UpdateCounterInterceptor.class.getCanonicalName());
props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, interceptors);
producer = new KafkaProducer<>(props);
1)configure(configs)
获取配置信息和初始化数据时调用。
2)onSend(ProducerRecord)
该方法封装进 KafkaProducer.send 方法中,即它运行在用户主线程中。Producer 确保在消息被序列化以及计算分区前调用该方法。用户可以在该方法中对消息做任何操作,但最好保证不要修改消息所属的 topic 和分区,否则会影响目标分区的计算。
3)onAcknowledgement(RecordMetadata, Exception)
该方法会在消息从 RecordAccumulator 成功发送到 Kafka Broker 之后,或者在发送过程中失败时调用。并且通常都是在 producer 回调逻辑触发之前。onAcknowledgement 运行在producer 的 IO 线程中,因此不要在该方法中放入很重的逻辑,否则会拖慢 producer 的消息发送效率。
4)close
关闭 interceptor,主要用于执行一些资源清理工作如前所述,interceptor 可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。另外倘若指定了多个 interceptor,则 producer 将按照指定顺序调用它们,并仅仅是捕获每个 interceptor 可能抛出的异常记录到错误日志中而非在向上传递。这在使用过程中要特别留意。