Leetcode刷题笔记 1025. 除数博弈

1025. 除数博弈


时间:2020年7月24日
知识点:找规律
题目链接: https://leetcode-cn.com/problems/divisor-game/

题目
爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。

最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:

  1. 选出任一 x,满足 0 < x < N 且 N % x == 0 。
  2. 用 N - x 替换黑板上的数字 N 。

如果玩家无法执行这些操作,就会输掉游戏。

只有在爱丽丝在游戏中取得胜利时才返回 True,否则返回 false。假设两个玩家都以最佳状态参与游戏

示例1
输入
2
输出
true

说明:
爱丽丝选择 1,鲍勃无法进行操作。

示例2
输入
3
输出
false

说明:
爱丽丝选择 1,鲍勃也选择 1,然后爱丽丝无法进行操作。

解法
A代表爱丽丝 B代表鲍勃

  1. 情况一. 当n = 1时,A无法选出x,A败B胜。先选的输
  2. 情况二. 当n = 2时,A先执行,选择x=1,到B执行,变成情况1,B先选,B输。先选的胜
  3. 情况三. 当n = 3时,A先执行,选择x=1,到B执行,变成情况2,先选的胜可知B胜。先选的输
  4. 情况四. 当n = 4时,A先执行,可选择x=1或者x=2,当x=1时,到B选择变成情况3,B先选,B输;当x=2,到B选择变成情况2,B选,B胜,由于最佳状态参与游戏,所以还是A胜

假设:N是偶数,先选的胜,N是奇数,先选的败

证明:

  1. 假设 N≤k 时该结论成立,则N=k+1 时:
  2. 如果k为偶数,则k+1为奇数,x是k+1的因数,只可能是奇数,而奇数减去奇数等于偶数,所以到B的时候都是偶数。而根据我们的猜想假设N≤k的时候偶数的时候,先手必赢,所以A败B胜。
  3. 如果k为奇数,则k+1为偶数,x可以是奇数也可以是偶数,若减去一个奇数,那么k+1−x是一个小于等于k的奇数,此时B选,B输,所以A胜B败

代码

#include <stdio.h>
#include <iostream>
using namespace std;
class Solution {
public:
    bool divisorGame(int N) {
        return N%2==0;
    }
};
int main()
{
    int n = 2;
    Solution s;
    cout<<s.divisorGame(n);
}

今天也是爱zz的一天哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值