题目
爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。
最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:
- 选出任一 x,满足 0 < x < N 且 N % x == 0 。
- 用 N - x 替换黑板上的数字 N 。
如果玩家无法执行这些操作,就会输掉游戏。
只有在爱丽丝在游戏中取得胜利时才返回 True,否则返回 false。假设两个玩家都以最佳状态参与游戏
示例1
输入:
2
输出:
true
说明:
爱丽丝选择 1,鲍勃无法进行操作。
示例2
输入:
3
输出:
false
说明:
爱丽丝选择 1,鲍勃也选择 1,然后爱丽丝无法进行操作。
解法
A代表爱丽丝 B代表鲍勃
- 情况一. 当n = 1时,A无法选出x,A败B胜。先选的输
- 情况二. 当n = 2时,A先执行,选择x=1,到B执行,变成情况1,B先选,B输。先选的胜
- 情况三. 当n = 3时,A先执行,选择x=1,到B执行,变成情况2,先选的胜可知B胜。先选的输
- 情况四. 当n = 4时,A先执行,可选择x=1或者x=2,当x=1时,到B选择变成情况3,B先选,B输;当x=2,到B选择变成情况2,B选,B胜,由于最佳状态参与游戏,所以还是A胜
假设:N是偶数,先选的胜,N是奇数,先选的败
证明:
- 假设 N≤k 时该结论成立,则N=k+1 时:
- 如果k为偶数,则k+1为奇数,x是k+1的因数,只可能是奇数,而奇数减去奇数等于偶数,所以到B的时候都是偶数。而根据我们的猜想假设N≤k的时候偶数的时候,先手必赢,所以A败B胜。
- 如果k为奇数,则k+1为偶数,x可以是奇数也可以是偶数,若减去一个奇数,那么k+1−x是一个小于等于k的奇数,此时B选,B输,所以A胜B败
代码
#include <stdio.h>
#include <iostream>
using namespace std;
class Solution {
public:
bool divisorGame(int N) {
return N%2==0;
}
};
int main()
{
int n = 2;
Solution s;
cout<<s.divisorGame(n);
}
今天也是爱zz的一天哦!