Hive面试总结
-
- 什么是 Hive ?
- Hive结构描述
- Hive的优势
- 内部表、外部表、分区表、分桶表
- hive中 排序的种类和适用场景
- 动态分区和静态分区的区别 + 使用场景
- hive 语句执行顺序
- Hive的几种存储方式
- 列式存储的好处
- HQL转化为MapReduce的过程
- Hive 和关系型数据库的区别
- Hive和HBase的对比区别
- Hive 小文件问题及解决
- Hive调优及优化
- Hive数据倾斜如何定位 + 怎么解决
- Hive中MR(map reduce)、Tez和Spark执行引擎对比
- 为什么任务执行的时候只有一个reduce?
- Hive有索引么
- Hive为什么有分区
- 如何使用分区
- 分区注意事项
- 为什么要分桶?
- 分桶的意义
- 如何使用分桶
- 分区分桶表举例
- Hive函数
- hive中split、coalesce及collect_list函数的用法
- 使用过Hive解析JSON串吗
什么是 Hive ?
- Hive 是基于 Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能(HQL),提供快速开发的能力。Hive本质是将SQL转换为 MapReduce的任务进行运算,减少开发人员的学习成本,功能扩展很方便。:
- hive存的是和hdfs的映射关系,hive是逻辑上的数据仓库,实际操作的都是hdfs上的文件,HQL就是用sql语法来写的mr程序
- 数据仓库是大多数企业“试水”大数据的首选切入点 ,因为数据仓库主要编程语言还是 SQL,而在大数据平台上,不论是 Hive 还是 SparkSQL,都是通过高度标准化的 SQL 来进行开发,这对于很多从传统数据仓库向大数据转型的开发人员和团队来说,是一种较为平滑的过渡。
Hive结构描述
-
Hive构建在Hadoop的HDFS和MapReduce之上,用于管理和查询结构化/非结构化数据的数据仓库。
-
使用HQL作为查询接口,使用HDFS作为底层存储,使用MapReduce作为执行层
-
-
用户接口:包括 CLI,JDBC,ODBC和 WUI
- 其中最常用的是 CLI,CLI启动的时候,会同时启动一个 Hive 副本
- Client 是 Hive 的客户端,用户连接至 Hive Server。在启动 Client 模式的时候,需要指出 Hive Server 所在节点,并且在该节点启动 Hive Server。
- WUI 是通过浏览器访问 Hive。
-
Hive内部执行流程:解释器、编译器、优化器、执行器
- 解析器(解析SQL语句)、编译器(把SQL语句编译成MapReduce程序)、优化器(优化MapReduce程序)、执行器(将MapReduce程序运行的结果提交到HDFS)
- 从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后有 MapReduce 调用执行
-
元数据存储。通常是存储在关系数据库如 mysql, derby 中
- Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。Hive 元数据默认存储在 derby 数据库,不支持多客户端访问,所以将元数据存储在 MySQL 等数据库,支持多客户端访问。
-
Hadoop:用 HDFS 进行存储,利用 MapReduce 进行计算
- Hive 的数据存储在 HDFS 中,大部分的查询由 MapReduce 完成少数HiveSQL语句不会转化为MapReduce作业,直接从DataNode上获取数据后按照顺序输出。(包含 * 的查询,比如 select * from tbl 不会生成 MapRedcue 任务)
Hive的优势
- Hive拥有统一的元数据管理,所以和Spark、Impala等SQL引擎是通用的。通用是指,在拥有了统一的metastore之后,在Hive中创建一张表,在Spark/Impala中是能用的,只需要共用元数据,就可以切换SQL引擎,涉及到了Spark sql和Hive On Spark
- 可用SQL轻松访问数据,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析。
- 使存储的数据结构化
- 支持MapReduce计算引擎 、Spark和Tez分布式计算引擎
- 数据的存储格式多样 Hive中不仅可以使用逗号和制表符分隔值(CSV/TSV)文本文件,还可以使用Sequence File、RC、ORC、Parquet
- 数据离线处理 日志分析
内部表、外部表、分区表、分桶表
- 内部表:create table
- 创建内部表时,没有特别指定,则默认创建的表都是管理表manage table(也称内部表),会将数据移动到数据仓库指向的路径;不共享数据
- hive.metastore.warehouse.dir(默认:/user/hive/warehouse),
- 删除表时:在删除表的时候,内部表的元数据和数据会被一起删除,
- 外部表 :create external table
- 当一份数据需要被共享时,可以创建一个外部表指向这份数据。
- 若创建外部表,仅记录数据所在的路径通常在:/user/username/hive/warehouse/文件夹
- 而外部表只删除元数据,不删除数据。这样外部表相对来说更加安全些,数据组织也更加灵活,方便共享源数据。
- 分区表
- 分区表使用的是表外字段,需要指定字段类型,并通过关键字partitioned by(partition_name string)声明,但是分区划分粒度较粗 。
- 将数据按区域划分开,查询时不用扫描无关的数据,加快查询速度 。
- 分桶表
- 分桶使用的是表内字段,已经知道字段类型,不需要再指定。通过关键字 clustered by(column_name) into … buckets声明。分桶是更细粒度的划分、管理数据,可以对表进行先分区再分桶的划分策
- 分桶最大的优势就是:用于数据取样,可以起到优化加速的作用。
- 对分桶字段求哈希值,用哈希值与分桶的数量取余,余几,这个数据就放在那个桶内
hive中 排序的种类和适用场景
- order by 全局排序
- 会对输入做全局排序,因此只有一个reducer(多个reducer无法保证全局有序),所以当输入的数据规模较大时,会导致计算的时间较长
- 与数据库中 order by的区别在于在 hive 的严格模式下(hive.mapred.mode = strict)下,必须指定 limit ,否则执行会报错!
- sort by 每个MapReduce排序
- 不是全局排序,其在数据进入reducer前完成排序,单个有序。
- sort by 的数据只能保证在同一reduce中的数据可以按指定字段排序
- 不受 hive.mapred.mode 是否为strict ,nostrict 的影响,使用sort by 你可以指定执行的reduce 个数 (set mapred.reduce.tasks=)
- distribute by 每个分区排序:
- 按照指定的字段对数据进行划分输出到不同的reduce中。
- distribute by类似 MR 中 partition(自定义分区),进行分区,某个特定行应该到哪个 reducer ,通常是为了进行后续的聚集操作
- distribute by + sort by:
- 分桶,保证同一字段值只存在一个结果文件当中,结合 sort by 保证 每个 reduceTask 结果有序
- distribute by 和 sort by 的常见使用场景有:
- Map输出的文件大小不均
- Reduce输出文件不均
- 小文件过多
- 文件超大
- cluster by:
- 对同一字段分桶并排序,不能和 sort by 连用,除了具有 distribute by 的功能外还兼具 sort by 的功能。
- 但是排序只能是 升序 排序,不能像distribute by 一样去指定排序的规则为 ASC 或者 DESC 。
动态分区和静态分区的区别 + 使用场景
- 静态分区:
- 表的分区数量和分区值是固定的。静态分区需要手动指定,列是在编译时期通过用户传递来决定的。
- 需要提前知道所有分区。适用于分区定义得早且数量少的用例,不适用于生产。
- 动态分区:
- 是基于查询参数的位置去推断分区的名称,只有在 SQL 执行时才能确定,会根据数据自动的创建新的分区。
- 应用场景:有很多分区,无法提前预估新分区,动态分区是合适的,一般用于生产环境。
hive 语句执行顺序
-
from … where … select … group by … having … order by … limit …
-
注意事项
- 使用分区剪裁、列剪裁,分区一定要加
- 少用 COUNT DISTINCT,group by 代替 distinct
- 是否存在多对多的关联
- 连接表时使用相同的关键词,这样只会产生一个 job
- 减少每个阶段的数据量,只选出需要的,在 join 表前就进行过滤
- 大表放后面
- 谓词下推:where 谓词逻辑都尽可能提前执行,减少下游处理的数据量
- sort by 代替 order by
-
mysql执行顺序
- from… where…group by… having… select … order by… limit …
Hive的几种存储方式
-
Text File format : 默认格式,数据不做压缩,磁盘开销大,数据解析开销大。
-
Sequence File format
- SequenceFile 是 Hadoop API 提供的一种二进制文件支持,其具有使用方便、可分割、可压缩的特点
- SequenceFile 支持三种压缩选择:NONE, RECORD, BLOCK。 Record 压缩率低,一般建议使用 BLOCK 压缩。
-
面向行:在一起存储的同一行数据是连续存储
-
RCfile format : RCFILE 是一种行列存储相结合的存储方式。首先,其将数据按行分块,保证同一个 record 在一个块上,避免读一个记录需要读取多个 block。其次,块数据列式存储,有利于数据压缩和快速的列存取。RCFile 目前没有性能优势,只有存储上能省 10% 的空间。
-
Parquet :
- 列式数据存储。 查询比较快
- Parquet支持嵌套的数据模型,每一个数据模型的schema包含多个字段,每一个字段有三个属性:重复次数、数据类型和字段名
- 二进制方式存储的,是不可以直接读取和修改的
-
AVRO : avro Schema 数据序列化。
-
ORC : 对RCFile做了一些优化,支持各种复杂的数据类型 性能比较好
- ORC 将行的集合存储在一个文件中,并且集合内的行数据将以列式存储。采用列式格式,压缩非常容易,从而降低了大量的存储成本。
- 当查询时,会查询特定列而不是查询整行,因为记录是以列式存储的。
- ORC 会基于列创建索引,当查询的时候会很快。
- ORC文件也是以二进制方式存储的,所以是不可以直接读取
列式存储的好处
- 查询的时候不需要扫描全部的数据,而只需要读取每次查询涉及的列,这样可以将I/O消耗降低N倍,另外可以保存每一列的统计信息(min、max、sum等),实现部分的谓词下推。
- 由于每一列的成员都是同构的,可以针对不同的数据类型使用更高效的数据压缩算法,进一步减小I/O。
- 由于每一列的成员的同构性,可以使用更加适合CPU pipeline的编码方式,减小CPU的缓存失效。
HQL转化为MapReduce的过程
- Antlr定义SQL的语法规则,完成SQL词法,语法解析,将SQL转化为抽象语法树AST Tree
- HiveLexerX,HiveParser分别是Antlr对语法文件Hive.g编译后自动生成的词法解析和语法解析类
- 遍历AST Tree,抽象出查询的基本组成单元QueryBlock
- QueryBlock是一条SQL最基本的组成单元,包括三个部分:输入源,计算过程,输出。简单来讲一个QueryBlock就是一个子查询
- 遍历QueryBlock,翻译为执行操作树OperatorTree
- Hive最终生成的MapReduce任务,Map阶段和Reduce阶段均由OperatorTree组成。逻辑操作符,就是在Map阶段或者Reduce阶段完成单一特定的操作。
- 逻辑层优化器进行OperatorTree变换,减少mapreduce job,减少shuffle数据量
- 谓词下推、合并线性的OperatorTree中partition/sort key相同的reduce (from (select key,value from src group bu key, value)s select s.key group by s.key;
- Map端聚合
- 遍历OperatorTree,翻译为MapReduce任务
- 物理层优化器进行MapReduce任务的变换,生成最终的执行计划
Hive 和关系型数据库的区别
- 适用范围不同: Hive时效性、延时性比较高 ,主要进行离线的大数据分析;数据库主要用在在线系统
- 规模不同: Hive数据规模大,优势在 于处理大数据集
- 查询语言不同: HQL 和 SQL
- 存储位置不同: HDFS 和 本地
- 执行方式: Hive执行MapReduce , Mysq执行Executor
- 数据格式:Hive在加载数据的过程中不需要格式的转换,不会对数据本身进行修改 ;数据库中,不同数据库有不同存储引擎,加载的时候较慢
Hive和HBase的对比区别
- Hive 数据仓库,Hive的本质其实就相当于将HDFS中已经存储的文件在Mysql中做了一个双射关系,以方便使用HQL去管理查询。
- Hbase 数据库,面向列存储的非关系型数据库
- Hive 适用于离线的数据分析和清洗,延迟较高
- Hbase 适用于单表非关系型数据的存储,不适合做关联查询,延迟低适合在线业务
- Hive 存储的数据依旧在DataNode上,编写的HQL语句会转换成MapReduce代码执行
- HBase 数据持久存储放在DataNode上,以region的形式管理
Hive 小文件问题及解决
-
小文件如何产生的
-
动态分区插入数据,产生大量的小文件,从而导致map数量剧增;
-
倒入数据时产生,每执行一次 insert 时hive中至少产生一个文件,文件数量=MapTask数量*分区数,insert 导入时至少会有一个MapTask。像有的业务需要每10分钟就要把数据同步到 hive 中,这样产生的文件就会很多。
-
-- 通过load方式加载数据 load data local inpath '/export/score' overwrite into table A -- 导入文件夹 -- 通过查询方式加载数据 insert overwrite table A select s_id,c_name,s_score from B;
-
reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的);
-
数据源本身就包含大量的小文件。
-
-
造成的影响
- Hive的角度 小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能。
- HDFS文件元数据存储在NameNode 的内存中,在 内存空间有限的情况下,文件过多会影响NameNode 的寿命,同时影响计算引擎的任务数量,比如每个小的文件都会生成一个Map任务。
-
如何解决
-
使用 hive 自带的 concatenate 命令,自动合并小文件 alter table A concatenate;
- concatenate 命令只支持 RCFILE 和 ORC 文件类型。
- 使用concatenate命令合并小文件时不能指定合并后的文件数量,
-
一个节点上split的至少的大小(这个值决定了多个DataNode上的文件是否需要合并)
set mapred.min.split.size.per.node-- 设置map输入合并小文件的相关参数: set mapred.min.split.size.per.node -- 每个Map最小输入大小(这个值决定了合并后文件的数量) set mapred.min.split.size=256000000; -- 设置map端输出进行合并,默认为true set hive.merge.mapfiles
-