Leetcode热题 10. 正则表达式匹配

10. 正则表达式匹配

知识点:动态规划
时间:2021年4月13日
题目链接

题目
给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。

‘.’ 匹配任意单个字符
‘*’ 匹配零个或多个前面的那一个元素
所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。

示例 1
输入:s = “aa” p = “a”
输出:false
解释:“a” 无法匹配 “aa” 整个字符串。

示例 2:
输入:s = “aa” p = “a*”
输出:true
解释:因为 ‘*’ 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 ‘a’。因此,字符串 “aa” 可被视为 ‘a’ 重复了一次。

示例 3
输入:s = “ab” p = “."
输出:true
解释:".
” 表示可匹配零个或多个(’*’)任意字符(’.’)。

示例 4
输入:s = “aab” p = “cab”
输出:true
解释:因为 ‘*’ 表示零个或多个,这里 ‘c’ 为 0 个, ‘a’ 被重复一次。因此可以匹配字符串 “aab”。

示例 5
输入:s = “mississippi” p = “misisp*.”
输出:false

提示

  • 0 <= s.length <= 20
  • 0 <= p.length <= 30
  • s 可能为空,且只包含从 a-z 的小写字母。
    -p 可能为空,且只包含从 a-z 的小写字母,以及字符 . 和 *。
  • 保证每次出现字符 * 时,前面都匹配到有效的字符

解题思路

  1. 这是一个动态规划问题,用dp[i][j] 表示s的前i个字符是否能和p的前j个字符匹配
  2. 转移方程
    • p[j] 是小写字母时 需要比较 s[i] 和 p[j] 相等 dp[i][j] = dp[i-1][j-1] 否则 false
    • p[j] 是 . 时 dp[i][j] = dp[i-1][j-1]
    • p[j] 是 * 时 当(s[i] 和 p[j-1] 相等 或者 p[j-1] = ‘.’)
      • dp[i][j] = dp[i-1] [j] (匹配一个) || dp[i][j-2] (匹配0个)
      • 否则 dp[i][j-2] (匹配0个)
  3. 注意下标 开始的地方 -1 判断
  4. 特殊案例 .* 和 aa、aaa 和 “” 、“a*”

代码

#include "cheader.h"
class Solution {
public:
    bool isMatch(string s, string p) {
        int m = s.size(), n = p.size();
        vector<vector<int>> dp(m+1,vector<int>(n+1));
        dp[0][0] = 1;
        for(int i = 0; i <= m; i++){ //起始位置很重要 注意 "" 和 "a*"情况
            for(int j = 1; j <= n; j++){
                if(i > 0 && (p[j-1] == '.' || s[i-1] == p[j-1])) // 对应p是. 和 s[i-1]==p[j-1]
                    dp[i][j] = dp[i-1][j-1];
                else if(p[j-1] == '*'){
                    dp[i][j] = dp[i][j-2]; //对应 一个都不匹配的情况
                    if(i > 0 && (s[i-1] == p[j-2] || p[j-2] == '.')) //对应和前面一个匹配 注意.* 也是可以的
                        dp[i][j] |= dp[i-1][j];
                }else
                    dp[i][j] = 0; //否则为0
            }
        }
        return dp[m][n];
    }
};
int main()
{
    string s("aa");
    string p("aaa");
    Solution S;
    cout<<S.isMatch(s, p)<<endl;
    return 0;
}


今天也是爱zz的一天哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值