使用eck在k8s中部署es集群

本文详细介绍了如何使用Elastic Cloud on Kubernetes (ECK)在Kubernetes集群上部署和管理Elasticsearch (ES) 集群。内容涵盖了ECK的基本介绍、版本说明、部署ECK的操作步骤,包括创建CRD、安装operator,以及通过ECK部署ES集群的过程,同时还涉及了使用持久卷来存储ES数据。最后,文章还展示了如何部署Kibana并验证ES的数据持久化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. ECK简介

Elastic Cloud on Kubernetes (ECK) 是一个官方提供的用于在 Kubernetes 集群中简化部署、管理和操作 Elastic Stack(包括 Elasticsearch 和 Kibana)的扩展。

ECK 是一个 Kubernetes Operator,它管理和自动化 Elastic Stack 的生命周期。通过使用 ECK,可以在 Kubernetes 环境中快速实现以下功能:

  1. 部署和管理 Elasticsearch 和 Kibana 实例,包括创建、删除、扩展和升级。
  2. 配置和调整 Elastic Stack 组件以满足特定需求。
  3. 自动处理故障检测、恢复和备份。
  4. 保护 Elasticsearch 集群,通过安全配置、证书管理和安全通信来确保数据安全。
  5. 监控 Elastic Stack 的性能和资源使用,从而优化集群性能。

官方文档: https://www.elastic.co/guide/en/cloud-on-k8s/current/index.html

2. 版本说明

ECK版本: 2.8.0

适用于Kubernetes版本: 1.24~1.27 (本文使用1.27.2演示)

适用于ElasticsearchKibana版本: 6.8+、7.1+、8+ (本文演示部署8.8.0版本的es与kibana)

3. 部署ECK

3.1 创建ECK所需CRD

kubectl create -f https://download.elastic.co/downloads/eck/2.8.0/crds.yaml

输出

customresourcedefinition.apiextensions.k8s.io/agents.agent.k8s.elastic.co created
customresourcedefinition.apiextensions.k8s.io/apmservers.apm.k8s.elastic.co created
customresourcedefinition.apiextensions.k8s.io/beats.beat.k8s.elastic.co created
customresourcedefinition.apiextensions.k8s.io/elasticmapsservers.maps.k8s.elastic.co created
customresourcedefinition.apiextensions.k8s.io/elasticsearchautoscalers.autoscaling.k8s.elastic.co created
customresourcedefinition.apiextensions.k8s.io/elasticsearches.elasticsearch.k8s.elastic.co created
customresourcedefinition.apiextensions.k8s.io/enterprisesearches.enterprisesearch.k8s.elastic.co created
customresourcedefinition.apiextensions.k8s.io/kibanas.kibana.k8s.elastic.co created
customresourcedefinition.apiextensions.k8s.io/logstashes.logstash.k8s.elastic.co created
customresourcedefinition.apiextensions.k8s.io/stackconfigpolicies.stackconfigpolicy.k8s.elastic.co created

3.2 创建ECK opeartor

kubectl apply -f https://download.elastic.co/downloads/eck/2.8.0/operator.yaml

输出

namespace/elastic-system created
serviceaccount/elastic-operator created
secret/elastic-webhook-server-cert created
configmap/elastic-operator created
clusterrole.rbac.authorization.k8s.io/elastic-operator created
clusterrole.rbac.authorization.k8s.io/elastic-operator-view created
clusterrole.rbac.authorization.k8s.io/elastic-operator-edit created
clusterrolebinding.rbac.authorization.k8s.io/elastic-operator created
service/elastic-webhook-server created
statefulset.apps/elastic-operator created
validatingwebhookconfiguration.admissionregistration.k8s.io/elastic-webhook.k8s.elastic.co created

ECK operator在 elastic-system 命名空间中运行。生产环境中的工作负载选择专用命名空间,而不是使用 elastic-system 或 default 命名空间。

查看ECK operator

kubectl get pods -n elastic-system

输出

NAME                 READY   STATUS    RESTARTS   AGE
elastic-operator-0   1/1     Running   0          13m

4. 通过eck部署es集群

Kubernetes集群至少要有一个2GB可用内存的节点,否则Pod 将停留在 Pending 状态。

4.1 创建es集群es.yaml文件

apiVersion: elasticsearch.k8s.elastic.co/v1
kind: Elasticsearch
metadata:
  name: quickstart
spec:
  version: 8.8.0
  nodeSets:
  - name: default
    count: 3
    config:
      node.store.allow_mmap: false
    podTemplate:
      spec:
        volumes:
        - name: elasticsearch-data
          emptyDir: {
   }
kubectl apply -f es.yaml

4.2 查看es集群信息

查看es集群状态

kubectl get elasticsearch

输出

NAME         HEALTH    NODES   VERSION   PHASE             AGE
quickstart   unknown           8.8.0     ApplyingChanges   2m4s

此时看到的状态为unknown,可能是由于正在创建中

正常等待几分钟后应该显示为

NAME         HEALTH   NODES   VERSION   PHASE   AGE
quickstart   green    3       8.8.0     Ready   18m

查看es集群的pod

kubectl get pods --selector='elasticsearch.k8s.elastic.co/cluster-name=quickstart'

输出

NAME                      READY   STATUS    RESTARTS   AGE
quickstart-es-default-0   1/1     Running   0          19m
quickstart-es-default-1   1/1     Running   0          19m
quickstart-es-default-2   1/1     Running   0          19m

4.3 访问es集群

默认情况下为自动创建service

kubectl get service quickstart-es-http

输出

NAME                 TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)    AGE
quickstart-es-http   ClusterIP   10.105.188.20   <none>        9200/TCP   33m
# 获取密码
PASSWORD=$(kubectl get secret quickstart-es-elastic-user -o go-template='{
    {.data.elastic | base64decode}}')
curl -u "elastic:$PASSWORD" -k "https://quickstart-es-http:9200"

输出

{
  "name" : "quickstart-es-default-0",
  "cluster_name" : "quickstart",
  "cluster_uuid" : "hPaILve1QCe2ig25RPErcg",
  "version" : {
    "number" : "8.8.0",
    "build_flavor" : "default",
    "build_type" : "docker",
    "build_hash" : "c01029875a091076ed42cdb3a41c10b1a9a5a20f",
    "build_date" : "2023-05-23T17:16:07.179039820Z",
    "build_snapshot" : false,
    "lucene_version" : "9.6.0",
    "minimum_wire_compatibility_version" : "7.17.0",
    "minimum_index_compatibility_version" : "7.0.0"
  },
  "tagline" : "You Know, for Search"
}

5. 部署kibana

  1. 创建文件kibana.yaml
apiVersion: kibana.k8s.elastic.co/v1
kind: Kibana
### 如何在 Kubernetes (k8s) 上部署 Elasticsearch 集群 #### 准备工作 为了成功地在 Kubernetes部署 Elasticsearch 集群,需准备以下事项: - 已经安装并配置好 Kubernetes 集群。 - 安装 `kubectl` 命令行工具,并确保其已连接到目标 Kubernetes 集群。 #### 创建命名空间 建议创建一个新的命名空间来管理所有的 Elasticsearch 资源。这有助于保持环境整洁有序[^2]。 ```bash kubectl create namespace elasticsearch ``` #### 使用 Helm 或 Operator 方式简化部署过程 虽然可以直接通过 YAML 文件手动定义和应用各种资源对象,但是使用 Helm Chart 或官方提供的 Elastic Cloud on Kubernetes (ECK) Operator 可以大大减少复杂度并提高可靠性[^3]。 对于 ECK 的方式来说,首先需要安装 operator 自身: ```bash helm repo add elastic https://helm.elastic.co helm install elastic-operator elastic/eck-operator --namespace=elasticsearch ``` 等待几分钟让 operator 启动完成之后就可以继续下一步操作了。 #### 编写自定义资源配置文件 无论是采用哪种方法来进行实际的 ES 实例部署,在大多数情况下都需要编写一些定制化的配置文件。这些文件通常会涉及到 Pod、ServiceAccount、RoleBinding 等多个方面的内容。下面给出一个简单的例子展示如何利用 StatefulSet 和 Service 来构建一个多节点组成的集群。 ```yaml apiVersion: apps/v1 kind: StatefulSet metadata: name: es-cluster spec: serviceName: "es-headless" replicas: 3 selector: matchLabels: app: elasticsearch template: metadata: labels: app: elasticsearch spec: containers: - name: elasticsearch image: docker.elastic.co/elasticsearch/elasticsearch:7.9.0 ports: - containerPort: 9200 name: http env: - name: discovery.type value: "single-node" --- apiVersion: v1 kind: Service metadata: name: elasticsearch-service spec: type: ClusterIP selector: app: elasticsearch ports: - port: 9200 targetPort: http ``` 请注意上述示例仅适用于测试目的;生产环境中应当考虑更多因素如安全性设置(开启 X-Pack 认证)、持久卷声明(PVC)等[^1]。 #### 应用配置文件至 K8S 平台 当所有准备工作都完成后,可以通过如下命令提交之前编写的 yaml 文件给 kubernetes 进行解析执行: ```bash kubectl apply -f ./path/to/es-config.yaml -n elasticsearch ``` 如果一切顺利的话,则可以在几秒钟内看到新的 pod 正常启动运行起来。 #### 设置访问控制机制(可选) 考虑到安全性和权限隔离的需求,可能还需要额外配置 RBAC 规则以及 Secret 对象用来保存账户信息以便后续其他组件能够正常调用 API 接口。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值