AI_深度学习_NLP_BERT基于词向量的文本分析模型构建和特征提取

     AI_深度学习_NLP_BERT基于词向量的文本分析模型构建和特征提取

                                                                                                                       作者:田超凡

                                                                                                                        时间:20190823

实现原理概述:
对已经构建的模型做模型训练前的准备工作,包括但不限于
1.文本数据的提取,编码转换和清洗
2.对提取的文本数据进行模型参数封装,基于CNN的卷积核构建原理来构建模型训练参数
3.定义模型训练的机器学习算法,此处只是做文本分析和文本预测,涉及到小范围=>大范围迭代检索,所以采用算法是线性回归+SoftMax聚合算法,采用的训练网络是CNN和BP/RBF
4.代码封装线性回归算法和CNN-BP/RBF网络结构层
5.代入已经封装好的模型训练测试数据并进行池化和维度转换,输出提取的符合模型训练条件的模型参数结果集
6.接下来重点还是模型数据的提取和转换、算法和网络的定义和封装、卷积核大小的定义和迭代输出、文本特征提取(基于词向量)
7.在网络层,使用LSTM或者BP都可以实现,但是推荐BP,理由是LSTM是链式执行过程,必须基于线性回归逐一迭代,影响训练性能
8.在训练时的训练方式可以选择CPU默认/GPU,推荐使用GPU+CUNA10的方式作为训练方式


# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# nlp-bert 进行文本分析预测训练测试数据集的读取和清洗

import os
import modeling
import optimization
import tensorflow as tf
from tensorflow.estimator import RunConfig, Estimator, EstimatorSpec

os.environ["CUDA_VISIBLE_DEVICES"] = "0"
flags = tf.flags

FLAGS = flags.FLAGS

## Required parameters
flags.DEFINE_string(
    "bert_config_file", 'pretrain_model/bert_config.json',
    "The config json file corresponding to the pre-trained BERT model. "
    "This specifies the model architecture.")

flags.DEFINE_string(
    "input_file", "data_ch/dev.tf_record",
    "Input TF example files (can be a glob or comma separated).")
flags.DEFINE_string(
    "dev_file", "data_ch/dev.tf_record",
    "Input TF example files (can be a glob or comma separated).")

flags.DEFINE_string(
    "output_dir", 'output',
    "The output directory where the model checkpoints will be written.")

# Other parameters
flags.DEFINE_string(
    "init_checkpoint", 'pretrain_model/bert_model.ckpt',
    "Initial checkpoint (usually from a pre-trained BERT model).")

flags.DEFINE_integer(
    "max_seq_length", 128,
    "The maximum total input sequence length after WordPiece tokenization. "
    "Sequences longer than this will be truncated, and sequences shorter "
    "than this will be padded. Must match data generation.")

flags.DEFINE_integer(
    "max_predictions_per_seq", 20,
    "Maximum number of masked LM predictions per sequence. "
    "Must match data generation.")

flags.DEFINE_bool("do_train", True, "Whether to run training.")

flags.DEFINE_bool("do_eval", True, "Whether to run eval on the dev set.")

flags.DEFINE_integer("train_batch_size", 1, "Total batch size for training.")

flags.DEFINE_integer("eval_batch_size", 1, "Total batch size for eval.")

flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")

flags.DEFINE_integer("num_train_steps", 100000, "Number of training steps.")

flags.DEFINE_integer("num_warmup_steps", 10000, "Number of warmup steps.")

flags.DEFINE_integer("save_checkpoints_steps", 10000,
                     "How often to save the model checkpoint.")

flags.DEFINE_integer("iterations_per_loop", 1000,
                     "How many steps to make in each estimator call.")

flags.DEFINE_integer("max_eval_steps", 1000, "Maximum number of eval steps.")

flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")

tf.flags.DEFINE_string(
    "tpu_name", None,
    "The Cloud TPU to use for training. This should be either the name "
    "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
    "url.")

tf.flags.DEFINE_string(
    "tpu_zone", None,
    "[Optional] GCE zone where the Cloud TPU is located in. If not "
    "specified, we will attempt to automatically detect the GCE project from "
    "metadata.")

tf.flags.DEFINE_string(
    "gcp_project", None,
    "[Optional] Project name for the Cloud TPU-enabled project. If not "
    "specified, we will attempt to automatically detect the GCE project from "
    "metadata.")

tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")

flags.DEFINE_integer(
    "num_tpu_cores", 8,
    "Only used if `use_tpu` is True. Total number of TPU cores to use.")

# TODO TCF 定义一个模型构造器
def model_fn_builder(bert_config, init_checkpoint: object, learning_rate,
                     num_train_steps, num_warmup_steps, use_tpu,
                     use_one_hot_embeddings):
    """Returns `model_fn` closure for TPUEstimator."""

    # TODO TCF 定义一个模型虚拟化对象
    def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
        """The `model_fn` for TPUEstimator."""

        tf.logging.info("*** Features ***")
        for name in sorted(features.keys()):
            tf.logging.info("  name = %s, shape = %s" % (name, features[name].shape))

        input_ids = features["input_ids"]  # 经过遮蔽处理后的字的id
        input_mask = features["input_mask"]  # 输入字的权重mask,有字的地方对应1,没字的地方对应0,0的位置处不计算损失
        segment_ids = features["segment_ids"]  # 每个字属于哪句话
        masked_lm_positions = features["masked_lm_positions"]  # 被遮蔽掉的字的位置
        masked_lm_ids = features["masked_lm_ids"]  # 被遮蔽掉的字的id
        masked_lm_weights = features["masked_lm_weights"]  # 被遮蔽掉的字的权重mask,有遮蔽的地方为1,padding的地方为0,0的位置不计算损失
        next_sentence_labels = features["next_sentence_labels"]  # 连续还是不连续标签(1表示不连续,0表示连续)

        is_training = (mode == tf.estimator.ModeKeys.TRAIN)

        model = modeling.BertModel(
            config=bert_config,
            is_training=is_training,
            input_ids=input_ids,
            input_mask=input_mask,
            token_type_ids=segment_ids,
            use_one_hot_embeddings=use_one_hot_embeddings)

        (masked_lm_loss,
         masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
            bert_config, model.get_sequence_output(), model.get_embedding_table(),
            masked_lm_positions, masked_lm_ids, masked_lm_weights)  # 预测出被遮蔽掉的字的id,这里有一个损失

        (next_sentence_loss, next_sentence_example_loss,
         next_sentence_log_probs) = get_next_sentence_output(
            bert_config, model.get_pooled_output(), next_sentence_labels)  # 预测出句子是否相邻,这里有一个损失

        total_loss = masked_lm_loss + next_sentence_loss  # 将两个损失相加

        tvars = tf.trainable_variables()  # 把所有可训练的参数拿出来

        initialized_variable_names = {}
        scaffold_fn = None
        if init_checkpoint:
            (assignment_map, initialized_variable_names
             ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
            if use_tpu:

                def tpu_scaffold():
                    tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
                    return tf.train.Scaffold()

                scaffold_fn = tpu_scaffold
            else:
                tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

        tf.logging.info("**** Trainable Variables ****")
        for var in tvars:
            init_string = ""
            if var.name in initialized_variable_names:
                init_string = ", *INIT_FROM_CKPT*"
            tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                            init_string)

        output_spec = None
        if mode == tf.estimator.ModeKeys.TRAIN:
            # TODO TCF 基于GPU的模型训练
            train_op = optimization.create_optimizer(
                total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

            # output_spec = tf.contrib.tpu.TPUEstimatorSpec(
            # mode=mode,
            # loss=total_loss,
            # train_op=train_op,
            # scaffold_fn=scaffold_fn)

            # TODO TCF TensorFlow内置函数,基于LSTM将模型训练内核转换为GPU
            output_spec = EstimatorSpec(mode=mode, loss=total_loss, train_op=train_op)  # 替换成gpu

        elif mode == tf.estimator.ModeKeys.EVAL:

            # 模型训练结果不准确,可以使用tf.densor调整卷积核大小实现类似效果
            def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
                          masked_lm_weights, next_sentence_example_loss,
                          next_sentence_log_probs, next_sentence_labels):
                """Computes the loss and accuracy of the model."""
                masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
                                                 [-1, masked_lm_log_probs.shape[-1]])
                masked_lm_predictions = tf.argmax(
                    masked_lm_log_probs, axis=-1, output_type=tf.int32)
                masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
                masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
                masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
                masked_lm_accuracy = tf.metrics.accuracy(
                    labels=masked_lm_ids,
                    predictions=masked_lm_predictions,
                    weights=masked_lm_weights)  # 得到预测被屏蔽的字的准确率
                masked_lm_mean_loss = tf.metrics.mean(
                    values=masked_lm_example_loss, weights=masked_lm_weights)  # 得到平均每个样本预测被屏蔽的字的损失

                next_sentence_log_probs = tf.reshape(
                    next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
                next_sentence_predictions = tf.argmax(
                    next_sentence_log_probs, axis=-1, output_type=tf.int32)
                next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
                next_sentence_accuracy = tf.metrics.accuracy(
                    labels=next_sentence_labels, predictions=next_sentence_predictions)  # 得到预测句子是否相邻的准确率
                next_sentence_mean_loss = tf.metrics.mean(
                    values=next_sentence_example_loss)  # 得到平均每个样本预测句子是否相邻的损失

                return {
                    "masked_lm_accuracy": masked_lm_accuracy,
                    "masked_lm_loss": masked_lm_mean_loss,
                    "next_sentence_accuracy": next_sentence_accuracy,
                    "next_sentence_loss": next_sentence_mean_loss,
                }

            eval_metrics = (metric_fn, [
                masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
                masked_lm_weights, next_sentence_example_loss,
                next_sentence_log_probs, next_sentence_labels
            ])
            # output_spec = tf.contrib.tpu.TPUEstimatorSpec(
            # mode=mode,
            # loss=total_loss,
            # eval_metrics=eval_metrics,
            # scaffold_fn=scaffold_fn)
            output_spec = EstimatorSpec(
                mode=mode,
                loss=total_loss,
                eval_metric_ops=eval_metrics)
        else:
            raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))

        return output_spec

    return model_fn

# TODO TCF 输出卷积层的模型训练结果
def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
                         label_ids, label_weights):
    """Get loss and log probs for the masked LM."""
    input_tensor = gather_indexes(input_tensor, positions)  # 得到被屏蔽的字抽取出来的特征向量

    with tf.variable_scope("cls/predictions"):
        # We apply one more non-linear transformation before the output layer.
        # This matrix is not used after pre-training.
        with tf.variable_scope("transform"):
            input_tensor = tf.layers.dense(
                input_tensor,
                units=bert_config.hidden_size,
                activation=modeling.get_activation(bert_config.hidden_act),
                kernel_initializer=modeling.create_initializer(
                    bert_config.initializer_range))  # 将被屏蔽的字抽取出来的特征向量接一层全连接,激活函数用的是gelu激活函数
            input_tensor = modeling.layer_norm(input_tensor)  # 进行层归一化

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        output_bias = tf.get_variable(
            "output_bias",
            shape=[bert_config.vocab_size],
            initializer=tf.zeros_initializer())
        logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
        logits = tf.nn.bias_add(logits, output_bias)
        log_probs = tf.nn.log_softmax(logits, axis=-1)  # 得到被屏蔽的字预测出来属于字典中每个字的log概率

        label_ids = tf.reshape(label_ids, [-1])
        label_weights = tf.reshape(label_weights, [-1])  # label_weights指的是权重mask,被屏蔽掉的字中用padding的为0,不计算损失

        one_hot_labels = tf.one_hot(
            label_ids, depth=bert_config.vocab_size, dtype=tf.float32)

        # The `positions` tensor might be zero-padded (if the sequence is too
        # short to have the maximum number of predictions). The `label_weights`
        # tensor has a value of 1.0 for every real prediction and 0.0 for the
        # padding predictions.
        per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])  # 得到每个预测被屏蔽的字的损失
        numerator = tf.reduce_sum(label_weights * per_example_loss)  # 被屏蔽掉的字中用padding的地方不计算损失,最后得到预测屏蔽字的总损失
        denominator = tf.reduce_sum(label_weights) + 1e-5  # 求被屏蔽掉的字中不是用padding的一共多少字
        loss = numerator / denominator  # 得到预测屏蔽字的平均损失

    return (loss, per_example_loss, log_probs)

def get_next_sentence_output(bert_config, input_tensor, labels):
    """Get loss and log probs for the next sentence prediction."""

    # Simple binary classification. Note that 0 is "next sentence" and 1 is
    # "random sentence". This weight matrix is not used after pre-training.
    with tf.variable_scope("cls/seq_relationship"):
        output_weights = tf.get_variable(
            "output_weights",
            shape=[2, bert_config.hidden_size],
            initializer=modeling.create_initializer(bert_config.initializer_range))
        output_bias = tf.get_variable(
            "output_bias", shape=[2], initializer=tf.zeros_initializer())

        logits = tf.matmul(input_tensor, output_weights, transpose_b=True)

        # TODO TCF 为当前训练网络层加入Logitic回归函数去构建BP网络
        logits = tf.nn.bias_add(logits, output_bias)
        log_probs = tf.nn.log_softmax(logits, axis=-1)  # 得到预测句子属于相邻还是不相邻的log概率分布
        labels = tf.reshape(labels, [-1])

        # TODO TCF RNN OneHot网络构建概率泊松分布
        one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
        per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)  # 得到预测句子是否相邻的每个序列的损失
        loss = tf.reduce_mean(per_example_loss)  # 得到预测句子是否相邻的平均损失
        return (loss, per_example_loss, log_probs)

def gather_indexes(sequence_tensor, positions):
    """Gathers the vectors at the specific positions over a minibatch."""
    sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3)
    batch_size = sequence_shape[0]
    seq_length = sequence_shape[1]
    width = sequence_shape[2]

    # TODO TCF 模型训练率约为22.91%
    flat_offsets = tf.reshape(
        tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
    flat_positions = tf.reshape(positions + flat_offsets, [-1])
    flat_sequence_tensor = tf.reshape(sequence_tensor,
                                      [batch_size * seq_length, width])
    output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
    return output_tensor

def input_fn_builder(input_files,
                     max_seq_length,
                     max_predictions_per_seq,
                     is_training,
                     num_cpu_threads=4):
    """Creates an `input_fn` closure to be passed to TPUEstimator."""

    # TODO TCF 固定模型卷积层的卷积核通道数
    def input_fn(params):
        """The actual input function."""
        if is_training:
            batch_size = params["train_batch_size"]
        else:
            batch_size = params['eval_batch_size']
        name_to_features = {
            "input_ids":
                tf.FixedLenFeature([max_seq_length], tf.int64),
            "input_mask":
                tf.FixedLenFeature([max_seq_length], tf.int64),
            "segment_ids":
                tf.FixedLenFeature([max_seq_length], tf.int64),
            "masked_lm_positions":
                tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
            "masked_lm_ids":
                tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
            "masked_lm_weights":
                tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
            "next_sentence_labels":
                tf.FixedLenFeature([1], tf.int64),
        }

        # For training, we want a lot of parallel reading and shuffling.
        # For eval, we want no shuffling and parallel reading doesn't matter.
        # TODO TCF 如果是模型训练阶段,则需要执行一些特征处理
        # TODO TCF 如果是模型训练结束阶段,则停止和模型训练结果不匹配部分的数据集的特征处理
        if is_training:
            d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
            d = d.repeat()

            # TODO TCF 模型特征提取和转换,特征提取数量上限即为读取的测试数据集文件字节
            d = d.shuffle(buffer_size=len(input_files))

            # `cycle_length` is the number of parallel files that get read.
            # TODO TCF 指定需要迭代卷积层的次数
            cycle_length = min(num_cpu_threads, len(input_files))

            # `sloppy` mode means that the interleaving is not exact. This adds
            # even more randomness to the training pipeline.
            # TODO TCF 应用卷积层的卷积核、模型训练集和特征数进行模型转换
            d = d.apply(
                tf.contrib.data.parallel_interleave(
                    tf.data.TFRecordDataset,
                    sloppy=is_training,
                    cycle_length=cycle_length))
            d = d.shuffle(buffer_size=100)
        else:
            # TODO TCF 非模型训练阶段,记录测试数据集即可,不再进行迭代特征提取和转换
            d = tf.data.TFRecordDataset(input_files)
            # Since we evaluate for a fixed number of steps we don't want to encounter
            # out-of-range exceptions.
            d = d.repeat()

        # We must `drop_remainder` on training because the TPU requires fixed
        # size dimensions. For eval, we assume we are evaluating on the CPU or GPU
        # and we *don't* want to drop the remainder, otherwise we wont cover
        # every sample.
        d = d.apply(
            tf.contrib.data.map_and_batch(
                lambda record: _decode_record(record, name_to_features),
                batch_size=batch_size,
                num_parallel_batches=num_cpu_threads,
                drop_remainder=True))
        return d

    return input_fn

def _decode_record(record, name_to_features):
    """Decodes a record to a TensorFlow example."""
    example = tf.parse_single_example(record, name_to_features)

    # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
    # So cast all int64 to int32.

    # TODO TCF 如果是调用Example模块进行数据提取,则必须是INT64位编码,如果是调用TPU进行数据提取,必须是INT32位编码
    for name in list(example.keys()):
        t = example[name]
        if t.dtype == tf.int64:
            t = tf.to_int32(t)
        example[name] = t

    return example

# TODO TCF 入口,主要做以下几件事:
# TODO TCF 对已经构建的模型做模型训练前的准备工作,包括但不限于
# TODO TCF 1.文本数据的提取,编码转换和清洗
# TODO TCF 2.对提取的文本数据进行模型参数封装,基于CNN的卷积核构建原理来构建模型训练参数
# TODO TCF 3.定义模型训练的机器学习算法,此处只是做文本分析和文本预测,涉及到小范围=>大范围迭代检索,
# TODO TCF 所以采用算法是线性回归+SoftMax聚合算法,采用的训练网络是CNN和BP/RBF
# TODO TCF 4.代码封装线性回归算法和CNN-BP/RBF网络结构层
# TODO TCF 5.代入已经封装好的模型训练测试数据并进行池化和维度转换,输出提取的符合模型训练条件的模型参数结果集
# TODO TCF 重点还是模型数据的提取和转换、算法和网络的定义和封装、卷积核大小的定义和迭代输出、文本特征提取(基于词向量)
# TODO TCF 在网络层,使用LSTM或者BP都可以实现,但是推荐BP,理由是LSTM是链式执行过程,必须基于线性回归逐一迭代,影响训练性能
# TODO TCF 在训练时的训练方式可以选择CPU默认/GPU,推荐使用GPU+CUNA10的方式作为训练方式
def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)

    # TODO TCF 如果模型训练中断,则直接抛出异常结束
    if not FLAGS.do_train and not FLAGS.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    # TODO TCF 基于NLP-BERT去读取训练数据文本并进行训练数据转换和格式化工作
    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)

    # TODO TCF 如果定义的输出目录不存在,则先创建输出文件存放目录
    tf.gfile.MakeDirs(FLAGS.output_dir)

    input_files, dev_files = [], []
    for input_pattern in FLAGS.input_file.split(","):
        input_files.extend(tf.gfile.Glob(input_pattern))
    for input_pattern in FLAGS.dev_file.split(","):
        dev_files.extend(tf.gfile.Glob(input_pattern))

    tf.logging.info("*** Input Files ***")
    for input_file in input_files:
        tf.logging.info("  %s" % input_file)

    tpu_cluster_resolver = None
    if FLAGS.use_tpu and FLAGS.tpu_name:
        tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
            FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

    # is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
    # run_config = tf.contrib.tpu.RunConfig(
    # cluster=tpu_cluster_resolver,
    # master=FLAGS.master,
    # model_dir=FLAGS.output_dir,
    # save_checkpoints_steps=FLAGS.save_checkpoints_steps,
    # tpu_config=tf.contrib.tpu.TPUConfig(
    # iterations_per_loop=FLAGS.iterations_per_loop,
    # num_shards=FLAGS.num_tpu_cores,
    # per_host_input_for_training=is_per_host))

    model_fn = model_fn_builder(
        bert_config=bert_config,
        init_checkpoint=FLAGS.init_checkpoint,
        learning_rate=FLAGS.learning_rate,
        num_train_steps=FLAGS.num_train_steps,
        num_warmup_steps=FLAGS.num_warmup_steps,
        use_tpu=FLAGS.use_tpu,
        use_one_hot_embeddings=FLAGS.use_tpu)  # 返回的是一个函数

    # TODO TCF 以下部分是当训练过程中如果TPU方式出现问题就切换回默认的CPU处理方式,相当于容灾操作。
    # If TPU is not available, this will fall back to normal Estimator on CPU
    # or GPU.
    # estimator = tf.contrib.tpu.TPUEstimator(
    # use_tpu=FLAGS.use_tpu,
    # model_fn=model_fn,
    # config=run_config,
    # train_batch_size=FLAGS.train_batch_size,
    # eval_batch_size=FLAGS.eval_batch_size)# 使用优化器,可以考虑换成GPU格式的优化器
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.gpu_options.per_process_gpu_memory_fraction = 0.8
    config.log_device_placement = False

    # TODO TCF model_fn作为构建Elastic的核心处理函数,需要单独封装
    estimator = Estimator(model_fn=model_fn, config=RunConfig(session_config=config, model_dir=FLAGS.output_dir,
                                                              save_checkpoints_steps=FLAGS.save_checkpoints_steps),
                          params={'train_batch_size': FLAGS.train_batch_size,
                                  'eval_batch_size': FLAGS.eval_batch_size})  # GPU版优化器
    if FLAGS.do_train:
        tf.logging.info("***** Running training *****")
        tf.logging.info("  Batch size = %d", FLAGS.train_batch_size)
        train_input_fn = input_fn_builder(
            input_files=input_files,
            max_seq_length=FLAGS.max_seq_length,
            max_predictions_per_seq=FLAGS.max_predictions_per_seq,
            is_training=True)  # 返回一个函数

        # TODO TCF 通知模型训练层模型参数已构建完毕
        estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)

    if FLAGS.do_eval:
        tf.logging.info("***** Running evaluation *****")
        tf.logging.info("  Batch size = %d", FLAGS.eval_batch_size)

        eval_input_fn = input_fn_builder(
            input_files=dev_files,
            max_seq_length=FLAGS.max_seq_length,
            max_predictions_per_seq=FLAGS.max_predictions_per_seq,
            is_training=False)

        result = estimator.evaluate(
            input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)

        output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
        with tf.gfile.GFile(output_eval_file, "w") as writer:
            tf.logging.info("***** Eval results *****")
            for key in sorted(result.keys()):
                tf.logging.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

if __name__ == "__main__":
    # flags.mark_flag_as_required("input_file")
    # flags.mark_flag_as_required("bert_config_file")
    # flags.mark_flag_as_required("output_dir")
    tf.app.run()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值