Python 教你 3 分钟用 Bert 搭建问答搜索引擎

4877fb3fb50f6d357b43b238d2a6f52e.gif

鼎鼎大名的 Bert 算法相信大部分同学都听说过,它是 Google 推出的 NLP 领域“王炸级”预训练模型,其在 NLP 任务中刷新了多项记录,并取得 state of the art 的成绩。

但是有很多深度学习的新手发现 BERT 模型并不好搭建,上手难度很高,普通人可能要研究几天才能勉强搭建出一个模型。

没关系,今天我们介绍的这个模块,能让你在 3 分钟内基于 BERT 算法搭建一个问答搜索引擎。它就是 bert-as-service 项目。这个开源项目,能够让你基于多 GPU 机器快速搭建 BERT 服务(支持微调模型),并且能够让多个客户端并发使用。

1.准备

请选择以下任一种方式输入命令安装依赖
1. Windows 环境 打开 Cmd (开始-运行-CMD)。
2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。
3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install bert-serving-server # 服务端
pip install bert-serving-client # 客户端

请注意,服务端的版本要求:Python >= 3.5,Tensorflow >= 1.10 。

此外还要下载预训练好的BERT模型,在 https://github.com/hanxiao/bert-as-service#install 上可以下载,如果你无法访问该网站,也可以在 https://pythondict.com/download/bert-serving-model/ 此处下载。

也可在公众号后台回复 bert-as-service 下载这些预训练好的模型。

下载完成后,将 zip 文件解压到某个文件夹中,例如 /tmp/uncased_L-24_H-1024_A-16/.

2.Bert-as-service 基本使用

安装完成后,输入以下命令启动 BERT 服务:

bert-serving-start -model_dir /tmp/uncased_L-24_H-1024_A-16/ -num_worker=4

-num_worker=4 代表这将启动一个有四个 worker 的服务,意味着它最多可以处理四个并发请求。超过 4 个其他并发请求将在负载均衡器中排队等待处理。

下面显示了正确启动时服务器的样子:

ae1559e36ef8163fc227969e90543974.gif

使用客户端获取语句的编码

现在你可以简单地对句子进行编码,如下所示:

from bert_serving.client import BertClient
bc = BertClient()
bc.encode(['First do it', 'then do it right', 'then do it better'])

作为 BERT 的一个特性,你可以通过将它们与 |||(前后有空格)连接来获得一对句子的编码,例如

bc.encode(['First do it ||| then do it right'])

504e7884d3ed29d72ff9c7a5d675baf4.gif

远程使用 BERT 服务

你还可以在一台 (GPU) 机器上启动服务并从另一台 (CPU) 机器上调用它,如下所示:

# on another CPU machine
from bert_serving.client import BertClient
bc = BertClient(ip='xx.xx.xx.xx') # ip address of the GPU machine
bc.encode(['First do it', 'then do it right', 'then do it better'])

3.搭建问答搜索引擎

我们将通过 bert-as-service 从 FAQ 列表中找到与用户输入的问题最相似的问题,并返回相应的答案。

FAQ 列表其实就是官方文档的 readme.md, 在我提供的下载链接里也附带了。

1. 加载所有问题,并显示统计数据:

prefix_q = '##### **Q:** '
with open('README.md') as fp:
    questions = [v.replace(prefix_q, '').strip() for v in fp if v.strip() and v.startswith(prefix_q)]
    print('%d questions loaded, avg. len of %d' % (len(questions), np.mean([len(d.split()) for d in questions])))
    # 33 questions loaded, avg. len of 9

一共有 33 个问题被加载,平均长度是 9.

2. 然后使用预训练好的模型:uncased_L-12_H-768_A-12 启动一个 Bert 服务:

bert-serving-start -num_worker=1 -model_dir=/data/cips/data/lab/data/model/uncased_L-12_H-768_A-12

3. 接下来,将我们的问题编码为向量:

bc = BertClient(port=4000, port_out=4001)
doc_vecs = bc.encode(questions)

4. 最后,我们准备好接收用户的查询,并对现有问题执行简单的“模糊”搜索。

为此,每次有新查询到来时,我们将其编码为向量并计算其点积  doc_vecs 然后对结果进行降序排序,返回前 N 个类似的问题:

while True:
    query = input('your question: ')
    query_vec = bc.encode([query])[0]
    # compute normalized dot product as score
    score = np.sum(query_vec * doc_vecs, axis=1) / np.linalg.norm(doc_vecs, axis=1)
    topk_idx = np.argsort(score)[::-1][:topk]
    for idx in topk_idx:
        print('> %s\t%s' % (score[idx], questions[idx]))

完成!现在运行代码并输入你的查询,看看这个搜索引擎如何处理模糊匹配:

4718f68412bfba92bdfcf00d87de1ff4.gif

完整代码如下,一共 23 行代码:

上滑查看完整代码

 
 
import numpy as np
from bert_serving.client import BertClient
from termcolor import colored

prefix_q = '##### **Q:** '
topk = 5

with open('README.md') as fp:
    questions = [v.replace(prefix_q, '').strip() for v in fp if v.strip() and v.startswith(prefix_q)]
    print('%d questions loaded, avg. len of %d' % (len(questions), np.mean([len(d.split()) for d in questions])))

with BertClient(port=4000, port_out=4001) as bc:
    doc_vecs = bc.encode(questions)

    while True:
        query = input(colored('your question: ', 'green'))
        query_vec = bc.encode([query])[0]
        # compute normalized dot product as score
        score = np.sum(query_vec * doc_vecs, axis=1) / np.linalg.norm(doc_vecs, axis=1)
        topk_idx = np.argsort(score)[::-1][:topk]
        print('top %d questions similar to "%s"' % (topk, colored(query, 'green')))
        for idx in topk_idx:
            print('> %s\t%s' % (colored('%.1f' % score[idx], 'cyan'), colored(questions[idx], 'yellow')))


够简单吧?当然,这是一个基于预训练的 Bert 模型制造的一个简单 QA 搜索模型。

你还可以微调模型,让这个模型整体表现地更完美,你可以将自己的数据放到某个目录下,然后执行 run_classifier.py 对模型进行微调,比如这个例子:

https://github.com/google-research/bert#sentence-and-sentence-pair-classification-tasks

它还有许多别的用法,我们这里就不一一介绍了,大家可以前往官方文档学习:

https://github.com/hanxiao/bert-as-service

576acdb6459c6372aa6df16e5f7d48b4.png

End

「进击的Coder」专属学习群已正式成立,搜索「CQCcqc4」添加崔庆才的个人微信或者扫描下方二维码拉您入群交流学习。

3d1de37f7414847fd501009fdb38f4e7.png

看完记得关注@进击的Coder

及时收看更多好文

↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值