误差传播公式的推导

对于有误差的物理量进行运算的时候,学习了误差传播的公式,并学会了推导,将笔记记录如下:
f ( a , b , c ) f(a,b,c) f(a,b,c)为某一计算式,其中的变量带有误差形式,分别为
a = a ^ ± Δ a , b = b ^ ± Δ b , c = c ^ ± Δ c a=\hat a \pm \Delta a, b= \hat b \pm \Delta b, c= \hat c \pm \Delta c a=a^±Δa,b=b^±Δb,c=c^±Δc

(1) 算术合成误差传递公式
Δ f = ∣ ∂ f ∂ a ∣ Δ a + ∣ ∂ f ∂ b ∣ Δ b + ∣ ∂ f ∂ c ∣ Δ c \Delta f = \left| {\frac{{\partial f}}{{\partial a}}} \right|\Delta a + \left| {\frac{{\partial f}}{{\partial b}}} \right|\Delta b + \left| {\frac{{\partial f}}{{\partial c}}} \right|\Delta c Δf= af Δa+ bf Δb+ cf Δc
Δ f f = ∣ ∂ ln ⁡ f ∂ a ∣ Δ a + ∣ ∂ ln ⁡ f ∂ b ∣ Δ b + ∣ ∂ ln ⁡ f ∂ c ∣ Δ c \frac{{\Delta f}}{f} = \left| {\frac{{\partial \ln f}}{{\partial a}}} \right|\Delta a + \left| {\frac{{\partial \ln f}}{{\partial b}}} \right|\Delta b + \left| {\frac{{\partial \ln f}}{{\partial c}}} \right|\Delta c fΔf= alnf Δa+ blnf Δb+ clnf Δc
(2)方和根合成法误差传递公式
S f = ( ∂ f ∂ a ) 2 Δ 2 a + ( ∂ f ∂ b ) 2 Δ 2 b + ( ∂ f ∂ c ) 2 Δ 2 c {S_f} = \sqrt {{{\left( {\frac{{\partial f}}{{\partial a}}} \right)}^2}{\Delta ^2}a + {{\left( {\frac{{\partial f}}{{\partial b}}} \right)}^2}{\Delta ^2}b + {{\left( {\frac{{\partial f}}{{\partial c}}} \right)}^2}{\Delta ^2}c} Sf=(af)2Δ2a+(bf)2Δ2b+(cf)2Δ2c
S f f = ( ∂ ln ⁡ f ∂ a ) 2 Δ 2 a + ( ∂ ln ⁡ f ∂ b ) 2 Δ 2 b + ( ∂ ln ⁡ f ∂ c ) 2 Δ 2 c \frac{{{S_f}}}{f} = \sqrt {{{\left( {\frac{{\partial \ln f}}{{\partial a}}} \right)}^2}{\Delta ^2}a + {{\left( {\frac{{\partial \ln f}}{{\partial b}}} \right)}^2}{\Delta ^2}b + {{\left( {\frac{{\partial \ln f}}{{\partial c}}} \right)}^2}{\Delta ^2}c} fSf=(alnf)2Δ2a+(blnf)2Δ2b+(clnf)2Δ2c
关于为什么求对数的思考,因为
d ( ln ⁡ f ) d f = 1 f ⇒ d ( ln ⁡ f ) = ∂ ln ⁡ f ∂ a d a + ∂ ln ⁡ f ∂ b d b + ∂ ln ⁡ f ∂ c d c = d f f = Δ f f = S f f \frac{{d(\ln f)}}{{df}} = \frac{1}{f} \Rightarrow d(\ln f) = \frac{{\partial \ln f}}{{\partial a}}d a + \frac{{\partial \ln f}}{{\partial b}}d b + \frac{{\partial \ln f}}{{\partial c}}d c = \frac{{df}}{f} = \frac{{\Delta f}}{f} = \frac{{{S_f}}}{f} dfd(lnf)=f1d(lnf)=alnfda+blnfdb+clnfdc=fdf=fΔf=fSf
关于方和根直接开平方的思考,不妨以 f = f ( a , b ) f=f(a,b) f=f(a,b)为例, a a a b b b所服从的分布是独立的,则有
ln ⁡ f = m ln ⁡ a + n ln ⁡ b E ( d ln ⁡ f ) = E ( m ln ⁡ a ) + E ( n ln ⁡ b ) E 2 ( d ln ⁡ f ) = E 2 ( m d ln ⁡ a ) + E 2 ( n d ln ⁡ b ) + 2 E ( m d ln ⁡ a ) E ( n d ln ⁡ b ) = E 2 ( m d ln ⁡ a ) + E 2 ( n d ln ⁡ b ) ⇒ d 2 ln ⁡ f = ( m d ln ⁡ a ) 2 + ( n d ln ⁡ b ) 2 \ln f = m\ln a + n\ln b\\ E(d\ln f) = E(m\ln a) + E(n\ln b)\\ {E^2} (d\ln f) = {E^2}(md\ln a) + {E^2}(nd\ln b) + 2E(md\ln a)E(nd\ln b) = {E^2}(md\ln a) + {E^2}(nd\ln b)\\ \Rightarrow {d^2}\ln f = {(md\ln a)^2} + {(nd\ln b)^2} lnf=mlna+nlnbE(dlnf)=E(mlna)+E(nlnb)E2(dlnf)=E2(mdlna)+E2(ndlnb)+2E(mdlna)E(ndlnb)=E2(mdlna)+E2(ndlnb)d2lnf=(mdlna)2+(ndlnb)2

例1:
设有 f = 4 m π d 2 h , m = m ^ + Δ m , d = d ^ + Δ d , h = h ^ + Δ h f = \frac{{4m}}{{\pi {d^2}h}},m = \hat m + \Delta m,d = \hat d + \Delta d,h = \hat h + \Delta h f=πd2h4m,m=m^+Δm,d=d^+Δd,h=h^+Δh,求方差传播误差。
解:
首先求对数有 ln ⁡ f = ln ⁡ 4 π + ln ⁡ m − 2 ln ⁡ d − ln ⁡ h \ln f = \ln \frac{4}{\pi } + \ln m - 2\ln d - \ln h lnf=lnπ4+lnm2lndlnh
分别求偏微分,有
∂ ln ⁡ f ∂ m = 1 m \frac{{\partial \ln f}}{{\partial m}} = \frac{1}{m} mlnf=m1
∂ ln ⁡ f ∂ d = − 2 d \frac{{\partial \ln f}}{{\partial d}} = - \frac{2}{d} dlnf=d2
∂ ln ⁡ f ∂ h = − 1 h \frac{{\partial \ln f}}{{\partial h}} = - \frac{1}{h} hlnf=h1
所以
S f f = ( ∂ ln ⁡ f ∂ a ) 2 Δ 2 a + ( ∂ ln ⁡ f ∂ b ) 2 Δ 2 b + ( ∂ ln ⁡ f ∂ c ) 2 Δ 2 c = ( Δ m m ) 2 + ( 2 Δ d d ) 2 + ( Δ h h ) 2 \begin{array}{l} \frac{{{S_f}}}{f} = \sqrt {{{\left( {\frac{{\partial \ln f}}{{\partial a}}} \right)}^2}{\Delta ^2}a + {{\left( {\frac{{\partial \ln f}}{{\partial b}}} \right)}^2}{\Delta ^2}b + {{\left( {\frac{{\partial \ln f}}{{\partial c}}} \right)}^2}{\Delta ^2}c} \\ = \sqrt {{{\left( {\frac{{\Delta m}}{m}} \right)}^2} + {{\left( {\frac{{2\Delta d}}{d}} \right)}^2} + {{\left( {\frac{{\Delta h}}{h}} \right)}^2}} \end{array} fSf=(alnf)2Δ2a+(blnf)2Δ2b+(clnf)2Δ2c =(mΔm)2+(dd)2+(hΔh)2
所以
f = [ 1 ± ( Δ m m ) 2 + ( 2 Δ d d ) 2 + ( Δ h h ) 2 ] 4 m ^ π d ^ 2 h ^ f = \left[ {1 \pm \sqrt {{{\left( {\frac{{\Delta m}}{m}} \right)}^2} + {{\left( {\frac{{2\Delta d}}{d}} \right)}^2} + {{\left( {\frac{{\Delta h}}{h}} \right)}^2}} } \right]\frac{{4\hat m}}{{\pi {{\hat d}^2}\hat h}} f= 1±(mΔm)2+(dd)2+(hΔh)2 πd^2h^4m^

例2:
设测量到山顶的距离为 247.3 m 247.3m 247.3m,测定角度为 1 0 ∘ 3 4 ′ {10^ \circ }34' 1034,测距误差为 0.05 m 0.05m 0.05m,测角误差为 3 ′ 3' 3,试算水平距离的测量误差。
解:
由题意得 L = D ⋅ c o s θ L=D \cdot cos\theta L=Dcosθ, 取对数有
l n L = l n D + l n c o s θ ln L =ln D+ln cos \theta lnL=lnD+lncosθ
所以误差为
S L = L ( 1 D Δ D ) 2 + ( tan ⁡ θ Δ θ ) 2 = 247.3 ∗ cos ⁡ ( 10 ∘ 3 4 ′ 180 ∘ π ) ( 1 247.3 × 0.05 ) 2 + ( tan ⁡ ( 10 ∘ 3 4 ′ 180 ∘ π ) × 3 ′ 180 ∘ π ) 2 = 0.0631 m \begin{array}{l} {S_L} = L\sqrt {{{\left( {\frac{1}{D}\Delta D} \right)}^2} + {{\left( {\tan \theta \Delta \theta } \right)}^2}} \\ = 247.3*\cos \left( {\frac{{{{10}^ \circ }34'}}{{180 \circ }}\pi } \right)\sqrt {{{\left( {\frac{1}{{247.3}} \times 0.05} \right)}^2} + {{\left( {\tan \left( {\frac{{{{10}^ \circ }34'}}{{180 \circ }}\pi } \right) \times \frac{{3'}}{{180 \circ }}\pi } \right)}^2}} \\ = 0.0631m \end{array} SL=L(D1ΔD)2+(tanθΔθ)2 =247.3cos(1801034π)(247.31×0.05)2+(tan(1801034π)×1803π)2 =0.0631m

  • 9
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Haleine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值