程序员应该知道的一二事(3)

科普

绿色版软件

我们经常看到或者听过绿色软件这个词。那绿色软件到底是什么?难不成是安全环保的软件?

绿色软件最大的两个特点是无需安装和安全。

无需安装,给我们带来的是便携性,因为我们可以放进U盘里,随插随用。像带个JAVA编译器(红警#手动滑稽#)上机就无需再次下载安装,美滋滋。

安全是因为绿色软件不会对除了所在目录以外的目录进行操作。也不会留下痕迹。只要把快捷方式和文件夹删了就可以删掉软件,无需卸载。

有的软件有绿色软件也没不是绿色版本的,根据需求下载就可以了。

所以说要想生活过的好,身上(U盘)总得带点绿(软件)。

感知机&神经网络&深度学习神经网络(Neural Networks)

说的是一种结构,深度学习是基于深度神经网络的一种机械学习的方法/方式,根据这个学习方法人们可以弄出许多算法。

神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),感知机是一类人造神经元,作用是根据输入的数据进行处理判断。

举个例子,有一大堆数据,其中一些属于A类蝴蝶,一些属于B类蝴蝶。感知机的作用就是尽可能的用一条直线把它们分开(判断是A类还是B类)。

但数据一旦多了起来,两类点靠的太近就不太可能用一条直线就分开来,这时候多层感知机(神经网络)就出来了——将多个单层感知机组合起来。

图中每一个圆圈我们都可以认为它是一个神经元,而每个圆圈之间的线条我们可以看作神经元之间的连接。可以看出,神经元被分为多层,且各层之间的神经元相互连接,本层内的神经元相互独立。

输入层:最左边的层(Layer L1),负责接收输入的数据

输出层:最右边的层(Layer L3),负责神经网络数据的输出

隐藏层:输入层和输出层中间的层(Layer L2)(又称隐含层)

把隐藏层大于2的神经网络叫做深度神经网络,而深度学习(Deep Learning)就是使用深层网络架构的学习方法。

(百度的,具体是不是隐藏层大于2就是深度神经网络我不敢保证,因为只看到一个网页是说大于2。深度学习在另一个网页上面说超过8层的才是深度学习)

简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。

深度学习做的步骤是 信号->特征->值。 特征是由网络自己选择。

深度学习的作用

举个最简单的例子:生物识别。

前面我们已经知道可以使用多层感知机(深度神经网络)运用深度学习进行大量的训练就可以在铺满数据的坐标轴“画出”一条分开A、B蝴蝶的“线”。这些数据可以是生活中大量A、B蝴蝶的颜色(颜色可以分很细#000000-#FFFFFF)。

有了这条“线”,然后再拍一张蝴蝶照片,从照片提取蝴蝶的颜色,就可以知道是哪种蝴蝶了(虽然百分百正确应该是不可能的)。

当然这只是一种特征,蝴蝶还有翅膀长、宽、厚等特征。就可以从平面的数据拓展到更高的纬度(比如三维坐标轴,在上面“画”一个“面”)。这个靠人类的计算能力是不行的,深度学习会帮我们搞定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值