给定一个二叉树
struct TreeLinkNode {
TreeLinkNode *left;
TreeLinkNode *right;
TreeLinkNode *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL
。
初始状态下,所有 next 指针都被设置为 NULL
。
说明:
- 你只能使用额外常数空间。
- 使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。
- 你可以假设它是一个完美二叉树(即所有叶子节点都在同一层,每个父节点都有两个子节点)。
示例:
给定完美二叉树,
1
/ \
2 3
/ \ / \
4 5 6 7
调用你的函数后,该完美二叉树变为:
1 -> NULL
/ \
2 -> 3 -> NULL
/ \ / \
4->5->6->7 -> NULL
解题思路:
层次遍历的应用,由于是完全二叉树,所以若节点的左子结点存在的话,其右子节点必定存在,所以左子结点的next指针可以直接指向其右子节点,对于其右子节点的处理方法是,判断其父节点的next是否为空,若不为空,则指向其next指针指向的节点的左子结点,若为空则指向NULL。
public static void connect(TreeLinkNode root) {
if(root==null)
return ;
if(root.left!=null)
{
root.left.next=root.right;
}
if(root.right!=null)
{
root.right.next=root.next!=null?root.next.left:null;
}
connect(root.left);
connect(root.right);
}
原本的完全二叉树的条件不再满足,但是整体的思路还是很相似,这里由于子树有可能残缺,故需要平行扫描父节点同层的节点,找到他们的左右子节点。(这里先处理每行最右边的节点,然后再向左做操作,不然残缺时,我们找不到右边节点)
public static void connect1(TreeLinkNode root) {
if(root==null)
return ;
TreeLinkNode p=root.next;
while(p!=null)
{
if(p.left!=null)
{
p=p.left;
break;
}
if(p.right!=null)
{
p=p.right;
break;
}
p=p.next;
}
if(root.left!=null)
root.left.next=root.right!=null?root.right:p;
if(root.right!=null)
root.right.next=p;
connect1(root.right);
connect1(root.left);
}