转载出处http://www.cnblogs.com/boring09/p/4252780.html
方法I:动态规划
另sum[i]表示从i开始的最大子串和,则有递推公式:sum[i] = max{A[i], A[i] + sum[i+1]}
因为递推式只用到了后一项,所以在编码实现的时候可以进行状态压缩,用一个变量即可
代码:
时间复杂度O(n),空间复杂度O(1)
方法II:扫描法(姑且这么称呼吧)
这是网上比较流行的一种做法,本质上还是动态规划+状态压缩。参考这篇博文
代码:
时间复杂度O(n),空间复杂度O(1)
int maxSubArray(int A[], int n) {
if (n == 0)
return 0;
int max_ending_here = A[0];
int max_so_far = A[0];
for(int i = 1; i < n; ++i)
{
if (max_ending_here < 0)
// So far we get negative values, this part has to be dropped
max_ending_here = A[i];
else
// we can accept it, it could grow later
max_ending_here += A[i];
max_so_far = max(max_so_far, max_ending_here);
}
return max_so_far;
}
方法III:分治法
假设求A[l..r]的最大子串和
首先将其分成两半A[l..m]和A[m+1..r],其中m=(l+r)/2,并分别求递归求出这两半的最大子串和,不妨称为left,right。如下图所示:
A[l..r]的连续子串和可能出现在左半边(即left),或者可能出现在右半边(即right),还可能出现在横跨左右两半的地方(即middle),如下图橙色部分所示:
当然,middle完全有可能覆盖left或right,它可能的范围入下图所示:
那么,如何求middle?貌似没有什么简单的方法,只能从中间向两遍扫,也就是把上图种的范围扫一遍。具体怎么扫呢?见方法I和方法II
是不是突然觉得很坑爹?既然知道最后求middle要扫一遍,还不如一开始就从l到r扫一遍求max得了,还费什么劲儿求left和right呢?求left和right的作用仅限于缩小扫描的范围。
代码:
分析一下时间复杂度,设问题的工作量是T(n),则有T(n) = 2T(n/2) + O(n),解得T(n) = O(nlogn)。看看,效率反而低了不少。