Leetcode#53 Maximum Subarray

转载出处http://www.cnblogs.com/boring09/p/4252780.html

方法I:动态规划

另sum[i]表示从i开始的最大子串和,则有递推公式:sum[i] = max{A[i], A[i] + sum[i+1]}

因为递推式只用到了后一项,所以在编码实现的时候可以进行状态压缩,用一个变量即可

代码:


 int maxSubArray(int A[], int n) {
 int sum = A[n - 1];
 int maxSum = sum;

 for (int i = n - 2; i >= 0; i--) {
    sum = max(A[i], sum + A[i]);
     maxSum = max(maxSum, sum);
   }
 
   return maxSum;
}

时间复杂度O(n),空间复杂度O(1)

 

方法II:扫描法(姑且这么称呼吧)

这是网上比较流行的一种做法,本质上还是动态规划+状态压缩。参考这篇博文

代码:

时间复杂度O(n),空间复杂度O(1)

  int maxSubArray(int A[], int n) {

    if (n == 0)
     return 0;
  
    int max_ending_here = A[0];
    int max_so_far = A[0];
    for(int i = 1; i < n; ++i)
     {
       if (max_ending_here < 0)
         // So far we get negative values, this part has to be dropped
         max_ending_here = A[i];
       else
         // we can accept it, it could grow later
         max_ending_here += A[i];
 
       max_so_far = max(max_so_far, max_ending_here);
     }
   return max_so_far;
 }

方法III:分治法

假设求A[l..r]的最大子串和

首先将其分成两半A[l..m]和A[m+1..r],其中m=(l+r)/2,并分别求递归求出这两半的最大子串和,不妨称为left,right。如下图所示:

A[l..r]的连续子串和可能出现在左半边(即left),或者可能出现在右半边(即right),还可能出现在横跨左右两半的地方(即middle),如下图橙色部分所示:

当然,middle完全有可能覆盖left或right,它可能的范围入下图所示:

那么,如何求middle?貌似没有什么简单的方法,只能从中间向两遍扫,也就是把上图种的范围扫一遍。具体怎么扫呢?见方法I和方法II

是不是突然觉得很坑爹?既然知道最后求middle要扫一遍,还不如一开始就从l到r扫一遍求max得了,还费什么劲儿求left和right呢?求left和right的作用仅限于缩小扫描的范围。

代码:

 int diveNConquer(int A[], int l, int r) {
   if (l == r)
     return A[l];
 
   int m = (l + r) / 2;
   int left = diveNConquer(A, l, m);
   int right = diveNConquer(A, m + 1, r);
   int middle = A[m];
   for (int i = m - 1, tmp = middle; i >= l; i--) {
     tmp += A[i];
     middle = max(middle, tmp);
   }
   for (int i = m + 1, tmp = middle; i <= r; i++) {
     tmp += A[i];
     middle = max(middle, tmp);
   }
 
   return max(middle, max(left, right));
 }
 
 int maxSubArray(int A[], int n) {
   return diveNConquer(A, 0, n - 1);
 }

分析一下时间复杂度,设问题的工作量是T(n),则有T(n) = 2T(n/2) + O(n),解得T(n) = O(nlogn)。看看,效率反而低了不少。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值