Leetcode52.Maximum Subarray(贪心与分治)

本篇博客详细分析了LeetCode 52题——最大子数组问题,提供了两种解法:贪心算法和分治法。贪心法在O(n)的时间复杂度内解决问题,而分治法则达到O(nlogn)。文中不仅解释了每种方法的思路,还展示了具体实现,并对比了运行时间和内存消耗。
摘要由CSDN通过智能技术生成

题目描述:

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6

题目分析:

该题属于Array类别,通过贪心可以实现O(n)级别的解决思路,通过分治法可以实现O(nlogn)的解决思路。

贪心法O(n)解决思路:

对于序列[A1,A2,...,AN]的遍历中,我们要求序列AI+...+AJ的和最大。

贪心算法在该问题的应用体现在我们在对序列遍历(i)求和的过程中,同时比较序列A0,...Ai的和与Ai的大小关系,两者的max值作为遍历至i时刻的当前序列最大sum.

并将当前序列最大sum与实际最大值比较,当序列遍历完毕,我们则求得整个序列的最大子集和。

Runtime: 72 ms, faster than 91.17% of Python3 online submissions for Maximum Subarray.

Memory Usage: 14.6 MB, less than 5.02% of Python3 online submissions for Maximum Subarray.

length = len(nums)
        summax 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值