Leetcode52.Maximum Subarray(贪心与分治)

本篇博客详细分析了LeetCode 52题——最大子数组问题,提供了两种解法:贪心算法和分治法。贪心法在O(n)的时间复杂度内解决问题,而分治法则达到O(nlogn)。文中不仅解释了每种方法的思路,还展示了具体实现,并对比了运行时间和内存消耗。
摘要由CSDN通过智能技术生成

题目描述:

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6

题目分析:

该题属于Array类别,通过贪心可以实现O(n)级别的解决思路,通过分治法可以实现O(nlogn)的解决思路。

贪心法O(n)解决思路:

对于序列[A1,A2,...,AN]的遍历中,我们要求序列AI+...+AJ的和最大。

贪心算法在该问题的应用体现在我们在对序列遍历(i)求和的过程中,同时比较序列A0,...Ai的和与Ai的大小关系,两者的max值作为遍历至i时刻的当前序列最大sum.

并将当前序列最大sum与实际最大值比较,当序列遍历完毕,我们则求得整个序列的最大子集和。

Runtime: 72 ms, faster than 91.17% of Python3 online submissions for Maximum Subarray.

Memory Usage: 14.6 MB, less than 5.02% of Python3 online submissions for Maximum Subarray.

length = len(nums)
        summax = nums[0]
        cummax = nums[0]
        for num in nums[1:]:
            cummax = cummax+num
            if cummax <num:
                cummax = num
            if cummax >summax:
                summax = cummax
                
        return summax

分治法O(nlogn)解决思路:

分治算法一般实现分为三个步骤:

(1)划分问题:将问题的实例划分为子问题,在本题中,就是将长度为l的序列不断划分为l/2的序列问题;

如划分中点m = l +int((r-l)/2)

在这里,需要注意区间的划分问题,在本题中,我采用较常用的左闭右开的区间划分方式,这样子在处理数组分割的问题比较自然。

对于一个长度为L的数组问题,我们视为区间[0,L),在第一次递归分治的划分过程中,分成[0,m) [m,L)

区间划分问题决定了我们如何确定递归终止条件

如划分为左闭右开:

对于任何长度大于等于2的数组,我们的递归终止条件为left-right==1

对于长度为1的数组,我们直接设定递归终止条件为left==right

(2)递归求解:递归解决子问题,在本题中,通过递归调用maxsub(left,m) maxsub(right,m),求得左右各子区间的最大序列sum值。递归终止条件在(1)中已提;

(3)合并问题:在(2)中我们已求得左右各子区间的最大序列sum值,接下来我们要考虑:左右子区间之间是否存在更大的序列sum值。

则我们需要从当前中点m为起点,向左遍历至left,求得最大的leftsummax

向右遍历至right-1,求得最大的rightsummax,

在将leftsummax+rightsummax与(2)中的最大值比较,作为当前递归的最后结果。

如果leftsummax+rightsummax大于(2)中的最大值,则说明左右子区间,包含中间m点在内的子序列存在更大的序列sum值

Runtime: 164 ms, faster than 5.83% of Python3 online submissions for Maximum Subarray.

Memory Usage: 14.8 MB, less than 5.02% of Python3 online submissions for Maximum Subarray.

class Solution:
    def maxsubhelper(self,nums,l,r):
        if r-l==1:
            return nums[l]
        if r==l:
            return nums[l]
        m =  l + int((r-l)/2)
        maxtmp = max(self.maxsubhelper(nums,l,m),self.maxsubhelper(nums,m,r))
        leftmax=0
        leftsummax = nums[m-1]
        for i in range(m-1,l-1,-1):
            leftmax += nums[i]
            leftsummax = max(leftsummax,leftmax)
        rightmax = 0
        rightsummax = nums[m]
        for i in range(m,r):
            rightmax += nums[i]
            rightsummax = max (rightsummax,rightmax)
        return max(maxtmp,leftsummax+rightsummax)
    def maxSubArray(self, nums: List[int]) -> int:
        return self.maxsubhelper(nums,0,len(nums))  
            

 

内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用人群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研读名校考研真题,考生可以准确把握考研命题趋势难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习实践操作,注重理解应用,以提高应试能力和专业知识水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值