这个问题需要从香农的信息熵开始。小明和爸爸玩猜球游戏,我拿一个球,你猜球的颜色,我可以回答你任何问题,你每猜一次,不管对错,你就一个星期不能玩王者荣耀,当然,猜对,游戏停止,否则继续猜。当然,当答案只剩下两种选择时,此次猜测结束后,无论猜对猜错都能100%确定答案,无需再猜一次,此时游戏停止。
题目1:
爸爸拿来一个箱子,跟小明说:里面有橙、紫、蓝及青四种颜色的小球任意个,各颜色小球的占比不清楚,现在我从中拿出一个小球,你猜我手中的小球是什么颜色?
在这种情况下,小明什么信息都不知道,只能认为四种颜色的小球出现的概率是一样的。所以,根据策略1,1/4概率是橙色球,小明需要猜两次,1/4是紫色球,小明需要猜两次,其余的小球类似,所以小明预期的猜球次数为:H = 1/4 * 2 + 1/4 * 2 + 1/4 * 2 + 1/4 * 2 = 2
题目2:
爸爸还是拿来一个箱子,跟小明说:箱子里面有小球任意个,但其中1/2是橙色球,1/4是紫色球,1/8是蓝色球及1/8是青色球。我从中拿出一个球,你猜我手中的球是什么颜色的?
在这种情况下,小明知道了每种颜色小球的比例,比如橙色占比二分之一,如果我猜橙色,很有可能第一次就猜中了。所以,根据策略2,1/2的概率是橙色球,小明需要猜一次,1/4的概率是紫色球,小明需要猜两次,1/8的概率是蓝色球,小明需要猜三次,1/8的概率是青色球,小明需要猜三次
所以小明猜题次数的期望为:H = 1/2 * 1 + 1/4 * 2 + 1/8 * 3 + 1/8 * 3= 1.75
题目3:
爸爸跟小明说:里面的球都是橙色,现在我从中拿出一个,你猜我手中的球是什么颜色?肯定是橙色,小明需要猜0次。
总结: