扫盲
文章平均质量分 77
快乐小羊没烦恼
北青院李某人
展开
-
【Java相关】java对象的创建及结构
文章目录一、对象创建的过程1.1 new指令1.2 分配内存1.3 初始化1.4 对象信息配置1.5 构造函数init二、对象的内存布局2.1 对象头2.1.1 对象自身的运行时数据2.1.2 类型指针2.2 实例数据2.3 对齐填充三、如何访问创建的对象3.1 使用句柄3.2 指针访问3.3 总结一、对象创建的过程1.1 new指令当Java虚拟机遇到一条字节码new指令时, 先检查这个指令的参数是否能在常量池中定位到一个类的符号引用, 并且检查这个符号引用代表的类是否已被加载、 解析和初始化过。原创 2022-04-01 15:53:23 · 792 阅读 · 0 评论 -
【Java相关】GC垃圾回收和内存分区
文章目录前言如何决定哪些对象是垃圾?1、引用计数法2、可达性分析法其他问题java的堆内存什么中生代¥%……&前言说起垃圾回收机制gc,主要是两部分为题需要解决:如何判断谁是垃圾?则么回收?(涉及算法和策略)如何决定哪些对象是垃圾?1、引用计数法java中是通过引用来和对象进行关联的,也就是说如果要操作对象,必须通过引用来进行。那么简单的办法就是通过引用计数来判断一个对象是否可以被回收。如果一个对象没有任何引用与之关联,则说明该对象基本不太可能在其他地方被使用到,那么这个对象就成为原创 2022-04-11 11:10:36 · 3282 阅读 · 0 评论 -
【计算机基础】ubantu创建共享文件夹映射为网络驱动器
文章目录步骤步骤1、 下载samba,是一个共享网络文件夹的工具。sudo apt-get install samba安装完成后执行samba -V如果可以看到版本号即为安装成功2、创建你要共享的目录mkdir 你的目录chmod 777 你的目录3、第二步需要配置samba服务器,使用如下命令打开samba的配置文件sudo vi /etc/samba/smb.conf 加入配置信息[share]**(注意,这里的share你写什么名字,就会在最终的网络驱动器上叫什么名原创 2022-03-21 19:20:19 · 1028 阅读 · 0 评论 -
【视线追踪】视线追踪的性能评估框架 及 基础知识
文章目录一、 前言二、 眼球追踪基础1. 眼动类型研究2. 基本设备3. 校准 calibration4. 眼球视线和头部姿态的关系5. 视线追踪精确度的评估三、 视线估计算法1. 基于2维回归2. 基于3D模型1) 单摄像头2) 多摄像头3. 基于交叉比4. 基于外观5. 基于眼睛形状的方法四、 实现估计的应用1. 电脑2. 电视3. 头戴设备4. 汽车5. 手持设备6. 设备配置五、 视线追踪的性能指标和错误原因1. 不同平台之间差异性很大2. 影响视线追踪可用性的因素六、 视线追踪系统的性能评估框架1原创 2022-01-04 20:01:33 · 4619 阅读 · 0 评论 -
【计算机基础】IO相关知识
文章目录前言一、阻塞、非阻塞IO阻塞IO非阻塞IO二、IO复用IO复用的形成原因三、信号驱动IO模型四、异步IO五、IO总结前言之前看了一些关于Redis的只是,其中有一个知识点——IO多路复用,我不太清楚,索性今天从IO模式学起,系统的了解一下IO相关内容,也许会对理解Redis有所帮助。IO模型有以下几种:阻塞IO非阻塞IOIO复用(select和poll)信号驱动异步IO另外再明确一个概念,一个数据的输入操作一般分为两个阶段:等待数据准备好把数据从内核拷贝到进程对于网络原创 2021-12-09 19:57:12 · 1178 阅读 · 0 评论 -
【Redis】什么是高可用?redis为何高可用?
文章目录前言什么是高可用?Redis为何高可用?1、哨兵机制**当一个Sentinel启动时, 它需要执行以下步骤:**哨兵对节点的三项监控(1)info命令:(2)向 __sentinel__:hello 频道同步信息(3)向数据节点做心跳探测主观下线客观下线选举领头Sentinel故障转移(1)新的主服务器选举规则(2)选举之后,让其他从服务器服从主服务器(3)将旧的主服务器变为从服务器**哨兵的核心知识**2、数据库的主从复制部分复制(1)偏移量(2)复制积压缓冲区(3)服务器运行ID前言什么是高原创 2021-11-30 21:13:39 · 2209 阅读 · 0 评论 -
【Redis】底层数据结构及其封装对象详解
文章目录前言一、对象的类型和编码1、类型不同类型的type输出2、编码和它的底层实现二,字符串对象int编码raw编码embstr编码注意,long double也是按照string保存的!!!三、列表对象1、压缩列表编码2、双端链表编码补充,压缩列表的结构3、编码转换四、哈希对象1、压缩列表编码2、字典编码3、 编码转换五、集合对象1、整数集合编码2、哈希表编码两种编码图3、编码转换六、有序集合对象1、压缩列表编码2、跳跃表编码为什么有序集合需要同时使用跳跌表和字典来实现?3、编码转换七、内存回收前言原创 2021-11-29 22:10:06 · 1717 阅读 · 0 评论 -
【计算机网络】HTTP和HTTPS
HTTP不安全HTTP协议以明文方式发送内容,不提供任何方式的数据加密,如果攻击者截取了Web浏览器和网站服务器之间的传输报文,就可以直接读懂其中的信息,因此,HTTP协议不适合传输一些敏感信息,比如:信用卡号、密码等支付信息。为什么HTTPS安全HTTPS是HTTP和SSL组合而成的,在传输层使用了SSL进行加密,保证了只有拥有私钥的才能看到信HTTPS工作原理首先服务端给客户端传输证书,这个证书就是公钥,只是包含了很多的信息,比如说证书的办法机构,证书的过期时间客户端进行证书的解析,比如说验原创 2021-11-26 19:03:30 · 1920 阅读 · 0 评论 -
【AI】什么是深度学习中的Batch Norm?
什么是Batch Norm:个人感觉,Batch Norm是深度学习中出镜率很高的一项技术,可以使训练更容易、加速收敛、防止模型过拟合。在很多基于CNN的分类任务中,被大量使用(个人理解,BN层很适合分类任务!)。BN对图像来说类似于一种对比度的拉伸,其色彩的分布都会被归一化,会破坏了图像原本的对比度信息(所以BN就不适合做超清晰度重建之类的任务)。但是图像分类不需要保留图像的对比度信息,利用图像的结构信息就可以完成分类,所以Batch Norm反而降低了训练难度,甚至一些不明显的结构,在Batch原创 2021-01-04 19:33:13 · 345 阅读 · 0 评论 -
【AI】VGG网络简介
文章目录1、简介2、VGG网络结构3、原理1、简介VGG是Oxford的Visual Geometry Group的组提出的,所以叫VGG;VGG是一种经典的卷积神经网络;VGG有两种结构,分别是VGG16和VGG19,两者并没有本质上的区别,只是网络深度不一样。2、VGG网络结构VGG16包含了16个隐藏层(13个卷积层和3个全连接层),如上图中的D列所示;VGG19包含了19个隐藏层(16个卷积层和3个全连接层),如上图中的E列所示VGG网络的结构非常一致,从头到尾全部使用的是3x原创 2021-03-18 20:59:55 · 2554 阅读 · 0 评论 -
Cloud Foundry和 Kubernetes 的区别
文章目录Cloud Foundry是什么Kubernetes是什么相似点PaaS和IaaS+Cloud FoundryKubernetes支持的容器KubernetesCloud Foundry我们以一个开发者需要部署一个Spring Boot Java应用为例。Cloud Foundry是什么Cloud Foundry是一个独立于云的平台即服务解决方案。开源的Cloud Foundry由Cl...原创 2018-12-11 14:53:43 · 5422 阅读 · 0 评论 -
【运筹学】单纯形法的理论推导和定理证明
接下来的定理证明我会结合单纯性表法来讲解:注意,我写的这个,就是打印体的这个原创 2020-12-27 21:36:29 · 3403 阅读 · 0 评论 -
【转载】通俗解释交叉熵和相对熵
这个问题需要从香农的信息熵开始。小明和爸爸玩猜球游戏,我拿一个球,你猜球的颜色,我可以回答你任何问题,你每猜一次,不管对错,你就一个星期不能玩王者荣耀,当然,猜对,游戏停止,否则继续猜。当然,当答案只剩下两种选择时,此次猜测结束后,无论猜对猜错都能100%确定答案,无需再猜一次,此时游戏停止。题目1:爸爸拿来一个箱子,跟小明说:里面有橙、紫、蓝及青四种颜色的小球任意个,各颜色小球的占比不清楚,现在我从中拿出一个小球,你猜我手中的小球是什么颜色?在这种情况下,小明什么信息都不知道,只能认为四种颜色的小转载 2020-12-26 14:25:29 · 150 阅读 · 0 评论 -
【AI】生成模型和判定模型
文章目录前言二者的区别维基百科上Generative案例:常见模型前言对于分类模型,一般有三种建模方法:生成模型判定模型直接学习决策边界。本文先说生成模型和判定模型。二者的区别生成式模型:举例:现在要判定一只羊是山羊还是绵羊,根据山羊的特征首先学习出一个山羊的模型A,然后根据绵羊的特征学习出一个绵羊的模型B,然后从这只羊中提取特征C,之后把C放到A、B里都泡一泡,看看概率,哪个大就是哪个。判别式模型:判别模型之所以称为“判别”模型,是因为其根据X“判别”Y;要确定一个羊是山原创 2020-12-12 14:48:11 · 806 阅读 · 0 评论 -
【组合数学】通俗解释 Burnside引理和Polya定理
文章目录Burnside引理和Polya定理Burnside引理定义:Burnside例子解释Polya定理Burnside引理和Polya定理对于图形来说,如果通过旋转,图像能达到其他图像的效果,这叫做本质上一样。Burnside的目的是,我们能有多少种排列方案,求的是一个方案的数量num。Burnside引理定义:反正直接让我看这个定义…我是看不懂…所以还是直接上例子吧。Burnside例子解释所以!!!例子套用Burnside引理就是 L = (16+2+4+2)/4 =原创 2020-12-03 19:06:36 · 2658 阅读 · 1 评论 -
【软件工程】DevOps的研究和解读
文章目录前言1、DevOps的历史由来2、什么是DevOps3、DevOps工具监控工具性能分析/APM工具批量+自动化运维工具集中日志分析工具持续集成/发布工具IaaS集成4、DevOps案例其他三者的关系:自动化运维资产管理系统(CMDB)前言本文根据软件敏捷开发(并不拘泥于最经典的敏捷模式)为大方向,重点谈一谈软件开发中的一个比较火的概念——DevOps。1、DevOps的历史由来为了有一个完整的叙事逻辑,在此再简述一下早期软件开发:早期程序员对所要开发的软件的所有环节都有透彻的了解,从原创 2020-11-27 22:14:59 · 1513 阅读 · 3 评论 -
【AI】CNN 卷积神经网络 及图像识别举例
文章目录前言卷积神经网络-CNN 的基本原理典型的 CNN 由3个部分构成:1、卷积层卷积层的作用:为什么卷积能够提取图像特征?2、池化层3、全连接层【待修正】全连接层运行流程?运行流程举例前言暂无卷积神经网络-CNN 的基本原理典型的 CNN 由3个部分构成:卷积层:卷积层负责提取图像中的局部特征;池化层:池化层用来大幅降低参数量级(降维);全连接层:全连接层类似传统神经网络的部分,用来输出想要的结果。1、卷积层卷积层的作用:提取图像的特征,并且卷积核的权重是可以学习的,卷积操作原创 2020-11-14 15:25:57 · 3390 阅读 · 0 评论 -
【AI】什么是梯度、梯度消失、梯度爆炸?
【扫盲】什么是深度学习中的梯度?首先,可以梯度理解为函数的斜率。之后,这个斜率,说的是损失函数的斜率,如果我们的损失函数仅仅有一个参数,那么梯度就是斜率。在这里我假设损失函数有两个参数(就是二维损失函数),那么损失函数的3D图像就如下图,中间是损失率最低的点,也是我们所要去寻找的点:在此,梯度是一个向量,表示某一函数在该点处的方向导数沿该方向取得最大值,即函数在该点处沿着该方向变化最快,变化率最大。我们就是根据梯度这个东西,来确定误差函数的最小点(或者说相对最小点),而损失函数原创 2020-11-13 09:30:40 · 1837 阅读 · 0 评论