
BEV感知经典之作BEVDepth论文与代码解析
BEVDepth整体架构如下图所示:通过对LSS的分析,作者发现了几个可以改进的点,如下:1、在LSS中,lift步骤中的单目深度估计不够准确,在训练过程中,对于这部分的修正来自于最终BEV检测结果的误差回传,在经过整个涉及坐标转换的回传过程后,这部分修正结果已经不够准确,导致前端网络深度估计能力不足。因此,BEVDepth增加了一个DepthNet,用激光雷达数据对其进行直接监督训练,提高其深度估计能力。2、LSS整个过程没有使用相机内外参,使得整个网络对于相机的空间位置没有感知。







