题意:有n个小朋友,标号为1到n,你要给每个小朋友至少1个且至多m个的糖果。小朋友们共提出k个要求,每个要求包括三个整数x,y,z,表示x号小朋友得到的糖果数减去y号小朋友得到的糖果数不大于z。如果你给i号小朋友j颗糖果,他会获得w[i][j]的满意度,你需要最大化所有小朋友的满意度之和。
官方题解:用i.j这点表示给第i个孩子至少j块糖,当这个点属于S集合时所代表条件成立。然后i.j->i.j+1连1000-wi,j,i.m向T连1000-wi,m,S向i.1连inf。如果存在ax-ay>=z,x.k->y.k+z连inf。跑最小割,再用n*1000减掉答案。
想法:直接按上述方法建图跑最小割,但是在此之前应使用SPFA判定K个限制关系是否会构成负环(即无解,输出-1)。
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<deque>
#include<vector>
#include<functional>
using namespace std;
#define LL long long
#define mm(a,b) memset(a,b,sizeof(a))
const double eps=1.0e-6;
const double PI=acos(-1.0);
template<typename T>T gcd(T a,T b){return b==0?a:gcd(b,a%b);}
template<typename T>T lcm(T a,T b){return a/gcd(a,b)*b;}
template<typename T>T _abs(T a){return a>0?a:-a;}
typedef pair<int,int> P;
const int maxn=2555;
const int INF=1<<30;
//Dinic
struct edge
{
int w,to,next;
}ed[20000];
int head[maxn],cnt,dis[maxn];
void add(int x,int y,int z)
{
ed[cnt].to=y;
ed[cnt].w=z;
ed[cnt].next=head[x];
head[x]=cnt++;
ed[cnt].to=x;
ed[cnt].w=0;
ed[cnt].next=head[y];
head[y]=cnt++;
}
bool bfs(int s,int t)
{
memset(dis,0,sizeof(dis));
dis[s]=1;
int q[maxn],iq=0;
q[iq++]=s;
int i,k,top;
for(i=0;i<iq;i++)
{
top=q[i];
if(top==t)
return true;
for(k=head[top];k!=-1;k=ed[k].next)
if(!dis[ed[k].to]&&ed[k].w)
{
q[iq++]=ed[k].to;
dis[ed[k].to]=dis[top]+1;
}
}
return false;
}
int dfs(int now,int maxw,int t)
{
if(now==t)
return maxw;
int ret=0,aug,k;
for(k=head[now];k!=-1;k=ed[k].next)
if(ed[k].w&&dis[ed[k].to]==dis[now]+1)
{
aug=dfs(ed[k].to,min(maxw-ret,ed[k].w),t);
ed[k].w-=aug;
ed[k^1].w+=aug;
ret+=aug;
if(ret==maxw)
return ret;
}
return ret;
}
int Dinic(int s,int t)
{
int ans=0;
while(bfs(s,t))
ans+=dfs(s,INF,t);
return ans;
}
//SPFA
struct edge2
{
int to,w,next;
}e[maxn];
int cnt2;
int d[maxn],head2[maxn];
bool visit[maxn];
bool vis[maxn];
int outque[maxn];
void add2(int x,int y,int z)
{
e[cnt2].to=y;
e[cnt2].w=z;
e[cnt2].next=head2[x];
head2[x]=cnt2++;
}
bool spfa(int s,int n)
{
int k,top;
mm(visit,0);
mm(outque,0);
fill(d,d+n+1,INF);
queue<int> q;
q.push(s);
visit[s]=true;
d[s]=0;
vis[s]=1;
while(q.size())
{
top=q.front();
q.pop();
visit[top]=false;
if(++outque[top]>n+1)
return false;
for(k=head2[top];k!=-1;k=e[k].next)
if(d[e[k].to]>e[k].w+d[top])
{
d[e[k].to]=e[k].w+d[top];
if(!visit[e[k].to])
{
visit[e[k].to]=true;
vis[e[k].to]=1;
q.push(e[k].to);
}
}
}
return true;
}
int xx[222],yy[222],zz[222];//记录小朋友们的要求
int main()
{
int n,m,t,k,x;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&k);
cnt=0;
mm(head,-1);
for(int i=1;i<=n;i++)
{
add(0,(i-1)*m+1,INF);
for(int j=1;j<=m;j++)
{
scanf("%d",&x);
add((i-1)*m+j,j==m?n*m+1:(i-1)*m+j+1,1000-x);
}
}
cnt2=0;
mm(head2,-1);
mm(vis,0);
for(int i=0;i<k;i++)
{
scanf("%d%d%d",&xx[i],&yy[i],&zz[i]);
add2(xx[i],yy[i],zz[i]);
}
bool f=1;
for(int i=1;i<=n;i++)
if(!vis[i])//可能构成多个连通块,对每个连通块都应判断是否有负环
if(!spfa(i,n))
{
f=0;
break;
}
if(!f)
{
puts("-1");
continue;
}
for(int i=0;i<k;i++)
{
for(int j=1;j<=m;j++)
{
if(zz[i]>=0&&j+zz[i]<=m)
add((xx[i]-1)*m+j+zz[i],(yy[i]-1)*m+j,INF);
else if(zz[i]<0&&j-zz[i]<=m)//官方题解的一个坑,最好还是为每个小朋友分配m+1个点,第m+1个点再连汇点
add((xx[i]-1)*m+j,j-zz[i]!=m?(yy[i]-1)*m+j-zz[i]:n*m+1,INF);
}
}
int ans=Dinic(0,n*m+1);
printf("%d\n",1000*n-ans);
}
return 0;
}
/*
1
3 3 3
1 2 3
1 2 3
1 2 3
1 2 -1
2 3 -1
3 1 -1
*/