题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6126
题目大意:要分给n个孩子每个孩子1~m个糖果, 第i个孩子收到j个糖果会获得 wi,j 的满意度, 同时还有k个限制, 限制(x, y, z)表示, 第x个孩子获得的糖果数减去第y个孩子的糖果数不大于z。 最大化每个孩子满意度之和。( 1≤n,m≤50,1≤k≤150,wi,j≤1000 )
思路: 考虑用最小割模型做线性规划, 即最大收益 - 最小代价。 假设每个孩子的满意度都达到1000, 对于原本 wi,j 的收益转化为 1000−wi,j 的代价,答案为1000 * n - 最小割。
考虑如何建图。 先将n个孩子拆成m个点, 若(i, j)最终仍与源点连通, 则表示第i个孩子获得的糖果数 ≥ j。首先将每个孩子的m个点依次相连, 相邻点点容量为 1000−wi,j , 最后一个点向汇点容量为 1000−wi,m , 源点向第一个点容量为 inf , 保证每个孩子的糖果取值在1~m内, 且一定大于等于1, 因为源点一定与(i, 1)连通。
对于某个限制(x, y, z), 枚举一个i,(x, i)向(y, i - z)连一条inf的边, 表示, 如果(x, i)与源点连通且(y, i - z)与汇点连通, 即第x个孩子的糖果数 ≥ i且第y个孩子的糖果数 < <script type="math/tex" id="MathJax-Element-1924"><</script>i-z, 则是不合法的, inf的那条边将保证会有边被割掉。
最后如果最小割 ≥inf 则输出-1。
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#define id(i, j) (((i) - 1) * m + (j))
using namespace std;
const int N = (int)1e4 + 10;
const int M = (int)1e6 + 10;
const int inf = 1 << 30;
int n, m, k, s, t, w[55][55];
int cnt, lst[N], nxt[M], to[M], f[M];
void add(int u, int v, int flow){
nxt[++ cnt] = lst[u]; lst[u] = cnt; to[cnt] = v; f[cnt] = flow;
nxt[++ cnt] = lst[v]; lst[v] = cnt; to[cnt] = u; f[cnt] = 0;
}
int head, tail, que[N], d[N], cur[N];
bool bfs(){
for (int i = 1; i <= t; i ++) d[i] = 0;
d[que[tail = 1] = s] = 1; head = 0;
while (head < tail){
int u = que[++ head];
for (int j = lst[u]; j; j = nxt[j]){
int v = to[j];
if (!f[j] || d[v]) continue;
d[v] = d[u] + 1;
que[++ tail] = v; if (v == t) return 1;
}
}
return 0;
}
int dfs(int u, int flow){
if (u == t) return flow;
int ret = 0, a;
for (int &j = cur[u]; j; j = nxt[j]){
int v = to[j];
if (d[v] == d[u] + 1 && flow && f[j] && (a = dfs(v, min(f[j], flow)))){
flow -= a; ret += a;
f[j] -= a; f[j ^ 1] += a;
}
}
return ret;
}
int main(){
int T = 0; scanf("%d", &T);
while (T --){
scanf("%d %d %d", &n, &m, &k);
cnt = 1;
s = n * m + 1, t = s + 1;
for (int i = 1; i <= t; i ++) lst[i] = 0;
for (int i = 1; i <= n; i ++)
for (int j = 1; j <= m; j ++)
scanf("%d", w[i] + j);
for (int i = 1; i <= n; i ++){
for (int j = 1; j <= m; j ++)
add(id(i, j), j == m ? t : id(i, j + 1), 1000 - w[i][j]);
add(s, id(i, 1), inf);
}
while (k --){
int x, y, z;
scanf("%d %d %d", &x, &y, &z);
for (int i = 1; i <= m; i ++){
if (i - z < 1) add(id(x, i), s, inf);
else if (i - z > m) add(id(x, i), t, inf);
else add(id(x, i), id(y, i - z), inf);
}
}
int ans = 0;
while (bfs()){
memcpy(cur, lst, sizeof(cur));
int ret = dfs(s, inf);
if (ret >= inf) {ans = inf; break;}
ans += ret;
}
printf("%d\n", ans >= inf ? -1 : n * 1000 - ans);
}
return 0;
}