[HDU 6126] Give out candies

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6126

题目大意:要分给n个孩子每个孩子1~m个糖果, 第i个孩子收到j个糖果会获得 wi,j 的满意度, 同时还有k个限制, 限制(x, y, z)表示, 第x个孩子获得的糖果数减去第y个孩子的糖果数不大于z。 最大化每个孩子满意度之和。( 1n,m50,1k150,wi,j1000

思路: 考虑用最小割模型做线性规划, 即最大收益 - 最小代价。 假设每个孩子的满意度都达到1000, 对于原本 wi,j 的收益转化为 1000wi,j 的代价,答案为1000 * n - 最小割。

考虑如何建图。 先将n个孩子拆成m个点, 若(i, j)最终仍与源点连通, 则表示第i个孩子获得的糖果数 j。首先将每个孩子的m个点依次相连, 相邻点点容量为 1000wi,j , 最后一个点向汇点容量为 1000wi,m , 源点向第一个点容量为 inf , 保证每个孩子的糖果取值在1~m内, 且一定大于等于1, 因为源点一定与(i, 1)连通。

对于某个限制(x, y, z), 枚举一个i,(x, i)向(y, i - z)连一条inf的边, 表示, 如果(x, i)与源点连通且(y, i - z)与汇点连通, 即第x个孩子的糖果数 i且第y个孩子的糖果数 < <script type="math/tex" id="MathJax-Element-1924"><</script>i-z, 则是不合法的, inf的那条边将保证会有边被割掉。

最后如果最小割 inf 则输出-1。

#include <cstdio>
#include <cstdlib>
#include <algorithm>

#define id(i, j) (((i) - 1) * m + (j))

using namespace std;

const int N = (int)1e4 + 10;
const int M = (int)1e6 + 10;
const int inf = 1 << 30;

int n, m, k, s, t, w[55][55];
int cnt, lst[N], nxt[M], to[M], f[M];

void add(int u, int v, int flow){
    nxt[++ cnt] = lst[u]; lst[u] = cnt; to[cnt] = v; f[cnt] = flow;
    nxt[++ cnt] = lst[v]; lst[v] = cnt; to[cnt] = u; f[cnt] = 0;
}

int head, tail, que[N], d[N], cur[N];
bool bfs(){
    for (int i = 1; i <= t; i ++) d[i] = 0;
    d[que[tail = 1] = s] = 1; head = 0;
    while (head < tail){
        int u = que[++ head];
        for (int j = lst[u]; j; j = nxt[j]){
            int v = to[j];
            if (!f[j] || d[v]) continue;
            d[v] = d[u] + 1;
            que[++ tail] = v; if (v == t) return 1;
        }
    }
    return 0;
}
int dfs(int u, int flow){
    if (u == t) return flow;
    int ret = 0, a;
    for (int &j = cur[u]; j; j = nxt[j]){
        int v = to[j];
        if (d[v] == d[u] + 1 && flow && f[j] && (a = dfs(v, min(f[j], flow)))){
            flow -= a; ret += a;
            f[j] -= a; f[j ^ 1] += a;
        }
    }
    return ret;
}

int main(){
    int T = 0; scanf("%d", &T);
    while (T --){
        scanf("%d %d %d", &n, &m, &k);

        cnt = 1;
        s = n * m + 1, t = s + 1;
        for (int i = 1; i <= t; i ++) lst[i] = 0;

        for (int i = 1; i <= n; i ++)
            for (int j = 1; j <= m; j ++)
                scanf("%d", w[i] + j);

        for (int i = 1; i <= n; i ++){
            for (int j = 1; j <= m; j ++)
                add(id(i, j), j == m ? t : id(i, j + 1), 1000 - w[i][j]);
            add(s, id(i, 1), inf);
        }

        while (k --){
            int x, y, z;
            scanf("%d %d %d", &x, &y, &z);
            for (int i = 1; i <= m; i ++){
                if (i - z < 1) add(id(x, i), s, inf);
                else if (i - z > m) add(id(x, i), t, inf);
                else add(id(x, i), id(y, i - z), inf);
            }
        }

        int ans = 0;
        while (bfs()){
            memcpy(cur, lst, sizeof(cur));
            int ret = dfs(s, inf);
            if (ret >= inf) {ans = inf; break;}
            ans += ret;
        }

        printf("%d\n", ans >= inf ? -1 : n * 1000 - ans);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值