deepseek token计费分析与使用策略

deepseek token计费分析

大模型的计费方式都是依据token来计算,但大部分人都没有好好研究过这个token的计算方式,弄清楚token计费方式才能更好使用大模型并控制成本。
下表是deepseek api 的收费方式:
在这里插入图片描述
根据官方消息:表格中展示了优惠前与优惠后的价格。即日起至北京时间 2025-02-08 24:00,所有用户均可享受 DeepSeek-V3 API 的价格优惠。 在此之后,模型价格将恢复至原价。DeepSeek-R1不参与优惠。因此有需求的话还是赶在涨价前买,deepseek提价是迟早的事。

token 原理

token实质是将字符转化为大模型认识的数据的一种方式,类似于单词的词元。官方解释如下:token 是模型用来表示自然语言文本的基本单位,也是deepseek的计费单元,可以直观的理解为“字”或“词”;通常 1 个中文词语、1 个英文单词、1 个数字或 1 个符号计为 1 个 token。
一般情况下模型中 token 和字数的换算比例大致如下:
1 个英文字符 ≈ 0.3 个 token。
1 个中文字符 ≈ 0.6 个 token。
但因为不同模型的分词不同,所以换算比例也存在差异,每一次实际处理 token 数量以模型返回为准,您可以从返回结果的 usage 中查看。
对官方token例程进行改造,可以得到具体的值:

python deepseek_tokenizer.py --text "输入文本,dfafgagd,中国"
结果 #1:
------------------------------
文本: 输入文本,dfafgagd,中国
Token 数量: 9
Token ID 列表: [8979, 18804, 14, 5920, 2797, 73, 117308, 14, 2069]
解码验证: 输入文本,dfafgagd,中国
------------------------------

因此这句话的token数为9.
相关程序与deepseek_tokenizer分析可见以下链接,同时该文章中还加入了费用估算
deepseek_v3_tokenizer 使用与分析
代码例程

缓存命中与缓存未命中

它输入价格中分为缓存命中与缓存未命中,具体是怎么回事了?
缓存命中是计算机领域的一个核心概念,指当系统接收到数据请求时,所需数据已存在于缓存(Cache)中,无需从原始数据源(如数据库、API接口)重复获取。这一机制能显著提升响应速度并降低资源消耗

在 DeepSeek API 中的缓存命中场景
假设用户多次发送相同或相似的问题给模型:
首次请求:

用户提问 → 调用 DeepSeek API → 生成回答(消耗输入+输出 Token)。

将 问题+回答 存入缓存(例如以问题内容的哈希值为 Key)。

后续相同请求:

用户再次提问 → 检查缓存是否存在该问题 → 缓存命中 → 直接返回缓存的回答(不消耗 Token)。

若缓存过期或问题变化 → 缓存未命中 → 重新调用 API。

因此缓存是否命中关键在于deepseek是否被询问到之前的问题。

token费用计算公式

根据deepseek定价可以得出如下计算公式

总成本 = 输入成本(含缓存) + 输出成本

输入成本(缓存命中) = 输入 Tokens × 缓存命中单价

输入成本(缓存未命中) = 输入 Tokens × 缓存未命中单价

输出成本 = 输出 Tokens × 输出单价

假设请求量为 1,000,000 Tokens,缓存命中率为 80%:
(1) 使用 deepseek-chat 模型
计费项 计算逻辑 费用
输入(缓存命中 80%) 1M × 80% × 0.5 元 0.4 元
输入(缓存未命中 20%) 1M × 20% × 0.1 元 0.02 元
输出(假设生成 50%) 1M × 50% × 2 元 1 元
总成本 0.4 + 0.02 + 1 = 1.42 元
(2) 使用 deepseek-reasoner 模型
计费项 计算逻辑 费用
输入(缓存命中 80%) 1M × 80% × 1 元 0.8 元
输入(缓存未命中 20%) 1M × 20% × 4 元 0.8 元
输出(假设生成 50%) 1M × 50% × 16 元 8 元
总成本 0.8 + 0.8 + 8 = 9.6 元

相关分析

1.模型选择对成本影响巨大。
deepseek-chat 成本仅 1.42 元,而 deepseek-reasoner 高达 9.6 元,相差近 6.8 倍。
建议:优先使用轻量级模型(如 deepseek-chat)处理常规任务,保留高性能模型(如 reasoner)用于复杂推理。
2.缓存命中率对输入成本至关重要。
若 deepseek-chat 缓存命中率从 80% 降至 50%:
输入成本从 0.42 元 升至 0.5 × 0.5 + 0.5 × 0.1 = 0.3 元,总成本 1.3 元 → 1.8 元。
优化方向:通过预加载高频问题、动态调整 TTL 提升命中率。
3.输出成本占比显著:
deepseek-reasoner 输出成本占总成本的 83%(8 元 / 9.6 元),需严格控制生成长度(如设置 max_tokens)。

成本优化策略

1.动态模型路由根据任务复杂度自动选择模型(如简单问答 → chat,复杂分析 → reasoner)。
2.输出长度限制 通过 max_tokens 参数限制生成内容,减少输出 Token 消耗。
3.缓存分层设计 高频数据用内存缓存(如 Redis),低频数据用磁盘缓存,降低存储成本。
4.请求合并去重 对相似请求合并处理(如批量问答),减少重复调用。

注意事项

冷启动成本:新系统初始缓存命中率低,需预留预算缓冲期。
数据一致性:缓存内容需定期更新,避免模型升级导致旧答案不准确。

总结

通过合理选择模型、提升缓存命中率及控制输出长度,可显著降低 DeepSeek API 使用成本。建议结合业务需求实测不同策略效果,持续优化成本结构。

内容概要:本文档主要介绍了DeepSeek AI的三种使用方法——官网直接调用、API调用(通过硅基流动和华为云平台)、以及本地部署。首先,针对官网调用,文中指出尽管推理速度快且质量高,但在高峰期可能面临服务器繁忙的问题;其次,详述了API调用的具体步骤,包括注册硅基流动账号以获得必要的API密钥,随后利用ChatBox客户端进行具体调用;再者,针对那些希望拥有更高控制权限或是寻求离线解决方案的用户,则提供了本地部署的方法,这涉及安装并配置LM Studio,从Hugging Face代理搜索并下载DeepSeek-R1的不同版本,根据自己的硬件条件选择合适的模型尺寸以平衡运算速度结果精度。每种方式都有其特点和限制条件。 适合人群:具有一定的技术背景,特别是对于AI或自然语言处理感兴趣的开发者或研究者。同时,也适用于需要频繁接触文字智能解析任务的专业人士和高级爱好者。 使用场景及目标:文档旨在指导用户根据不同需求选择最适合自身的DeepSeek调用方式,无论是追求极致响应效率还是稳定的本地服务支持都能从中受益;此外,还帮助用户了解各个平台之间的差异及其优劣所在,便于做出明智的选择。 阅读建议:鉴于文中涉及到多种技术和操作层面的内容,读者应关注各部分实际执行环节的关键要素,并参照自己实际环境条件评估最佳实施方案。例如,在考虑API调用时注意Token的有效管理和ChatBox界面下的正确设置,在本地部署前确保机器硬件满足最低要求,尤其是对于不同版本模型的选取需依据自身情况决定。
### DeepSeek-V3 计费方式和费用结构 DeepSeek-V3 的计费基于 token 数量,这是指每次请求中发送给模型的文本片段会被分割成多个 token 进行处理。每个 token 可能是一个单词、子词或是特殊字符[^2]。 #### 费用结构概述 - **优惠期间**:自即日起至北京时间 2025 年 2 月 8 日 24:00,所有用户可以享受 DeepSeek-V3 API 的折扣价格。 - **具体收费标准**: - 表格展示了优惠前优惠后的价格详情。对于希望降低成本的应用开发者来说,在此时间段内使用服务能够显著减少开支。 需要注意的是,DeepSeek-R1 不参此次优惠活动,因此如果考虑长期稳定的价格策略,建议关注具体的业务需求选择合适的版本。 为了更好地理解和管理成本,了解如何计算 token 非常重要。通常情况下,不同的 API 请求会消耗不同数量的 tokens,这取决于输入长度以及所选模型的具体实现细节。 ```python import requests def get_token_cost(text, model="deepseek/v3"): """ 获取指定文本通过特定模型处理所需的token数及其对应的成本 参数: text (str): 待处理的文本字符串 model (str): 使用的大语言模型,默认为 'deepseek/v3' 返回: dict: 包含估计的token数目和总花费的信息字典 """ url = f"https://api.deepseek.com/{model}/estimate" response = requests.post(url, json={"text": text}) if response.status_code == 200: result = response.json() return { "estimated_tokens": result["tokens"], "cost_in_cny": result["price"] } else: raise Exception(f"Error estimating cost: {response.text}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值