大数据平台将互联网应用和大数据产品整合起来,将实时数据和离线数据打通,使数据可以实现更大规模的关联计算,挖掘出数据更大的价值,从而实现数据驱动业务。大数据平台使得大数据技术产品可以落地应用,实现了自身价值。
大数据平台的整体架构可以由以下几个部分组成:
一、业务应用:其实指的是数据采集,你通过什么样的方式收集到数据。互联网收集数据相对简单,通过网页、App就可以收集到数据,比如很多银行现在都有自己的App。
更深层次的还能收集到用户的行为数据,可以切分出来很多维度,做很细的分析。但是对于涉及到线下的行业,数据采集就需要借助各类的业务系统去完成。
二、数据集成:指的其实是ETL,指的是用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。而这里的Kettle只是ETL的其中一种。
三、数据存储:指的就是数据仓库的建设了,简单来说可以分为业务数据层(DW)、指标层、维度层、汇总层(DWA)。
四、数据共享层:表示在数据仓库与业务系统间提供数据共享服务。Web Service和Web API,代表的是一种数据间的连接方式,还有一些其他连接方式,可以按照自己的情况来确定。
五、数据分析层:分析函数就相对比较容易理解了,就是各种数学函数,比如K均值分析、聚类、RMF模型等等。
列存储让磁盘中的各个Page仅存储单列的值,并非整行的值。这样压缩算法会更加高效。进一步说