大数据平台架构有哪些

大数据平台整合互联网应用和大数据产品,实现数据驱动业务。其架构包括数据采集、ETL、数据仓库建设、数据共享、数据分析、数据展现和数据访问。通过列存储和分布式计算提升效率,数据可视化提供直观展示。企业在使用大数据平台时,需应对合作伙伴服务和技术运维的挑战。
摘要由CSDN通过智能技术生成

  大数据平台将互联网应用和大数据产品整合起来,将实时数据和离线数据打通,使数据可以实现更大规模的关联计算,挖掘出数据更大的价值,从而实现数据驱动业务。大数据平台使得大数据技术产品可以落地应用,实现了自身价值。

 

  大数据平台的整体架构可以由以下几个部分组成:

 

  一、业务应用:其实指的是数据采集,你通过什么样的方式收集到数据。互联网收集数据相对简单,通过网页、App就可以收集到数据,比如很多银行现在都有自己的App。

 

  更深层次的还能收集到用户的行为数据,可以切分出来很多维度,做很细的分析。但是对于涉及到线下的行业,数据采集就需要借助各类的业务系统去完成。

 

  二、数据集成:指的其实是ETL,指的是用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。而这里的Kettle只是ETL的其中一种。

 

  三、数据存储:指的就是数据仓库的建设了,简单来说可以分为业务数据层(DW)、指标层、维度层、汇总层(DWA)。

 

  四、数据共享层:表示在数据仓库与业务系统间提供数据共享服务。Web Service和Web API,代表的是一种数据间的连接方式,还有一些其他连接方式,可以按照自己的情况来确定。

 

  五、数据分析层:分析函数就相对比较容易理解了,就是各种数学函数,比如K均值分析、聚类、RMF模型等等。

 

  列存储让磁盘中的各个Page仅存储单列的值,并非整行的值。这样压缩算法会更加高效。进一步说࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值