- 博客(32)
- 收藏
- 关注
原创 caj转换pdf 免费在线转换
CAJ转PDF在线免费, CAJ转换成PDF不限大小 - Caj2Pdf在线(https://caj2pdf.cn/),每日支持2次免费转换。(https://iloveofd.cn/caj2pdf),每日支持5次免费转换。二)CAJ2PDF在线工具。单个文件CAJ转换PDF。,进入caj转pdf页面。(三)speedpdf。
2025-06-13 09:14:43
151
原创 数据清洗之处理缺失点
在数据清洗过程中,处理缺失值的方法之一是删除缺失值。这种方法适用于缺失值数量较少或者缺失值对于分析任务的影响较小的情况。删除阈值设置阈值,如果某一行或者列中的缺失值数量超过阈值,则删除该行或者列。数学表达:空值滤波isNull(x) 函数:用于判断参数X是否为空值,空值,返回1;非空,返回0.
2025-05-27 14:55:32
327
原创 时间序列预测----多变量预测(多特征)
LSTM 是一个循环神经网络,能够处理长期以来关系。在执行多元时间序列预测分析时,需要使用多个特征预测未来时间点的特征。模块分解:数据预处理+模型(model)+训练(train)+评估模型。将过去的观测值作为输入,未来的值作为输出。2)创建模型+训练模型。
2025-04-03 08:33:02
318
原创 卷积神经网络来识别音频
本案例实现了一个 Google Speech Commands 数据集的音频分类模型。模型首先加载和预处理数据集,然后训练一个来识别音频标签,并在验证集上进行评估。
2025-01-10 14:18:59
314
原创 3d卷积网络(卷积原理)
的操作,类比到三维卷积,要做的就是把这个3×3×3的过滤器先放到最左上角的位置,这个3×3×3的过滤器有27个数,27个参数就是3的立方。依次取这27个数,然后乘以相应的红绿蓝通道中的数字。图像维度为6×6×3,过滤器为3×3×3,最后一个数字通道数必须和过滤器中的通道数相匹配。
2025-01-07 16:41:41
530
1
原创 数据集划分方法和原则
自助法直接以自助采集法(bootstrap sampling)为基础,给定包含m个样本的数据集D,对其进行采样产生数据集D' ,它的方式是每次从D中挑选一个样本,将其拷贝到D'中,然后再将该样本放入初始数据集D中,使样本在下次采样时仍然可能被采样到,这个过程重复执行m次,得到包含m个样本的数据集D'这就是自助法的结果。的S应该包含350正样本,350负样本,T中则包含150正样本,150负样本,如果S、T中样本类别差别很大,则误差估计将由于训练/测试数据分布得的差异性产生偏差。
2024-12-26 20:39:54
657
原创 特征选择方法
本篇文章给大家总结的十个特征选择方法有:方差阈值法单变量特征选择递归特征消除基于树模型的特征选择L1 正则化嵌入法主成分分析相关系数法信息增益互信息法具体的每种方法,咱们具体看下~
2024-12-12 22:01:28
1532
原创 双分支网络(图像+图像)
网络1为例,进行分析(输入图片的大小为:1*3*32*32)池化:输入(16,30,30)---输出(16,15,15)卷积:输入(3,32,32)---输出(16,30,30)卷积:输入(16,15,15)---输出(8,13,13)两个分支(网络1+网络2)的总特征:288*2=576。池化:输入(8,13,13)---输出(8,6,6)输入图片的尺寸 1*3*32*32为例子。网络1的输出总特征 8*6*6=288。卷积 Conv2d(3,16,3)卷积 Conv2d(16,8,3)
2024-12-05 17:38:55
518
转载 支持向量机
创建一个网格来进行可视化x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1h = (x_max / x_min)/100xx, yy = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min, y_max, h))示例:如果我们使用不同的伽玛值,如0,10或100,让我们来查看一下不同的区别。
2024-11-26 14:00:30
36
原创 K折交叉验证(以五折交叉验证为例)
它的基本思想是将原始数据集分成五个相等大小的子集(或折叠),其中四个子集用于训练模型,而剩下的一个子集用于测试模型。1. 不用于不平衡的数据集:正如在 HoldOut 交叉验证的情况下所讨论的,在 K-Fold 验证的情况下也可能发生训练集的所有样本都没有样本形式类“1”,并且只有 类“0”。更好的泛化能力:模型在多次不同的训练和测试集上进行训练和评估,有助于更好地了解模型的泛化能力,即模型对新数据的适应能力。因此我们有5个精度测量值,于是我们取这5个值的平均值,平均值是我们对未知数据集的准确性评估。
2024-11-21 21:17:36
1439
原创 神经网络画图工具
ConvNetDraw是一个使用配置命令的CNN神经网络画图工具;需要了解神经网络结构和代码,就很简单啦!:绘制结果为3D,可简单调整x,y,z这3个维度;:单一、传统、能满足基础需求。
2024-11-20 14:05:04
716
原创 计算机视觉和卷积网络的评价指标
交并比(intersection over union, 简称IOU)。意思是检测结果的矩形框与样本标注的矩形框的交集与并集的比值。其中A为预测矩形框,B为标注矩形框。计算公式为:IoU =交集面积/并集面积= (A∩B) / (A∪B)IOU 值越高,表明预测区域与实际区域之间的对齐程度越好,反映出模型越准确。
2024-11-19 17:08:15
218
原创 yolo v5.0 更换数据集运行
将--source修改为datase----test----images地址(相对内容跟的地址)(4)在(3)步骤后,创建dataset文件夹,并将皮肤病数据集移到此位置。(5)修改train.py文件的数据参数 --data 改为自己的图片地址。(4)改写dataset文件夹下的文件【data.yalm】总结:训练好后,模型有(1)最好的权重;(1)下载数据集(单击下一行【皮肤病】下载数据集)(4.2)自己的数据集,则需要自己写yaml文件。将--weights修改为训练后的最好权重。
2024-11-08 16:52:37
692
原创 yolov 数据集创建(labelimg工具使用)
打开需要标注的图片文件夹。——之后再弹出一个文件夹选择框(再次选择将图片标注信息的保存路径【文件夹名称为label,若没有此文件夹,则手动创建】(标注信息与原图片最好同级(父目录相同)),在右键菜单中,选择【create rectbox】命令,鼠标指针此时变为十字形。在图片中选中需要标注的事务,并输入标签。若此张图片标注完成,则在左边的导航窗口中选择【next】命令。(单击该命令切换),在单击【save】命令。,在中间的操作界面中,右击图片。(2)在左侧导航框中,选择。启动标注工具,如下图所示。
2024-11-07 15:57:59
603
原创 yolov5 5.0结构解读
YOLOv5目录结构├── data:主要是存放一些超参数的配置文件(这些文件(yaml文件)是用来配置训练集和测试集还有验证集的路径的,其中还包括目标检测的种类数和种类的名称);还有一些官方提供测试的图片。如果是训练自己的数据集的话,那么就需要修改其中的yaml文件。但是自己的数据集不建议放在这个路径下面,而是建议把数据集放到yolov5项目的同级目录下面。|——dataset :存放自己的数据集,分为images和labels两部分。
2024-11-05 19:58:25
272
原创 yolov5---5.0运行问题
(3)运行 detect 出现错误。发现安装的torch和torchvision的版本与pathon不一致,重新安装。(4)再次运行,numpy的版本过高。【解决方式:降低版本】 pip uninstall numpy。【原因】因为虚拟变量安装在非C盘,默认情况下其他盘没有虚拟空间。(2)安装3.9版本后,直接进入requiremen的目录 ,命令 cd <路径>(1)由于环境中没有说python的版本自己直接装了3.9版本。pip install numpy==低版本号。(5)再次运行,出现错误。
2024-11-05 19:41:14
322
转载 lenet-5
<div id="content_views" class="markdown_views prism-atom-one-light"> <svg xmlns="http://www.w3.org/2000/svg" style="display: none;"> <path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-mar
2024-10-09 17:00:37
98
原创 鸢尾花测试
print("预测结果的种类为:{}".format(iris_dataset['target_names'][prediction]))print("品种为:{}".format(iris_dataset['target'].shape)) #目标数据的尺寸。print("数据为:{}".format(iris_dataset['data'].shape)) #数组尺寸。print("数据集的键为:\n{}".format(iris_dataset.keys()))
2024-09-29 16:54:20
321
原创 机器学习环境设置
在ancanda prompt窗口中输入 conda create --prefidx 在ancanda prompt窗口中输入 conda env remove -p (3)在pycharm中选择conda设置的环境,通过设置虚拟环境即可(其他可不选择)(3)在ancanda prompt窗口中输入 pip install (1)安装ancanda和pycharm。(1)环境变量在创建在envs。(1)先将程序(文件)下载好。
2024-09-28 20:22:02
335
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人