1 留出法
将数据集D划分为三个互斥的集合,其中一个集合作为训练集S,一个作为测试集T,另一个为验证集V,即:
训练/测试及的划分要尽可能的保持数据分布的一致性,避免因数据划分过程引入额外的偏差对最终结果产生影响。例如对数据集D进行分层采样获得70%个样本作为训练集S,30%样本作为测试集,如果D包含500正样本,500负样本,则分层采样的S应该包含350正样本,350负样本,T中则包含150正样本,150负样本,如果S、T中样本类别差别很大,则误差估计将由于训练/测试数据分布得的差异性产生偏差。
2.交叉验证法
3. 自助法
自助法直接以自助采集法(bootstrap sampling)为基础,给定包含m个样本的数据集D,对其进行采样产生数据集D' ,它的方式是每次从D中挑选一个样本,将其拷贝到D'中,然后再将该样本放入初始数据集D中,使样本在下次采样时仍然可能被采样到,这个过程重复执行m次,得到包含m个样本的数据集D'这就是自助法的结果。