数据集划分方法和原则

1 留出法

将数据集D划分为三个互斥的集合,其中一个集合作为训练集S,一个作为测试集T,另一个为验证集V,即:

D=S\cup T\cup V,S\cap T=\varnothing ,S\cap V=\varnothing ,T\cap V=\varnothing

训练/测试及的划分要尽可能的保持数据分布的一致性,避免因数据划分过程引入额外的偏差对最终结果产生影响。例如对数据集D进行分层采样获得70%个样本作为训练集S,30%样本作为测试集,如果D包含500正样本,500负样本,则分层采样的S应该包含350正样本,350负样本,T中则包含150正样本,150负样本,如果S、T中样本类别差别很大,则误差估计将由于训练/测试数据分布得的差异性产生偏差。

2.交叉验证法

3. 自助法

自助法直接以自助采集法(bootstrap sampling)为基础,给定包含m个样本的数据集D,对其进行采样产生数据集D' ,它的方式是每次从D中挑选一个样本,将其拷贝到D'中,然后再将该样本放入初始数据集D中,使样本在下次采样时仍然可能被采样到,这个过程重复执行m次,得到包含m个样本的数据集D'这就是自助法的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值