2. N阶行列式
数域 K \textbf{K} K上的二元方程组
{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \left\{\begin{array}{l} a_{11}x_{1}+a_{12}x_{2}=b_{1}\\ a_{21}x_{1}+a_{22}x_{2}=b_{2} \end{array}\right. {
a11x1+a12x2=b1a21x1+a22x2=b2
写其系数矩阵:
( a 11 a 12 a 21 a 22 ) \begin{pmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{pmatrix} (a11a21a12a22)
上节课发现若 a 11 a 22 − a 12 a 21 = 0 a_{11}a_{22}-a_{12}a_{21}=0 a11a22−a12a21=0,则此方程组无解或有无穷多个解;若 a 11 a 22 − a 12 a 21 ≠ 0 a_{11}a_{22}-a_{12}a_{21}\ne 0 a11a22−a12a21=0,则此方程组有唯一解。该表达式称为二阶行列式,记为:
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}
a11a21a12a22
=a11a22−a12a21
它也称为矩阵 A \textbf{A} A的行列式,记作 ∣ A ∣ |\textbf{A}| ∣A∣,或 det A \det \textbf{A} detA
- 数域 K \textbf{K} K上系数矩阵为 A \textbf{A} A的二元一次方程组有唯一解 ⇔ ∣ A ∣ ≠ 0 \Leftrightarrow|\textbf{A}|\ne 0 ⇔∣A∣=0
- 数域 K \textbf{K} K上系数矩阵为 A \textbf{A} A的二元一次方程组有无穷多个解或无解 ⇔ ∣ A ∣ = 0 \Leftrightarrow|\textbf{A}|=0 ⇔∣A∣=0
对推广到 n n n元线性方程组,我们要研究 n n n阶行列式。
观察二阶行列式,我们发现,其行列式展开后的式子的每一项是取自不同行不同列的两个元素的乘积,每一项按照行指标按自然序(从小到大)排好位置,列指标所成的排列有 2 ! 2! 2!项的代数和,当列指标形成的排列时,该项带正号,当列指标形成的排列时,该项带负号
2.1 n n n元排列
- 1 , 2 , . . . , n 1,2,...,n 1,2,...,n或 n n n个不同的正整数的全排列就称为一个 n n n元排列。
- 从而 1 , 2 , . . . , n 1,2,...,n 1,2,...,n或 n n n个不同的正整数形成的 n n n元排列有 n ! n! n!个
【例】 3 3 3元排列有 3 ! = 6 3!=6 3!=6个, 123 , 132 , 213 , 231 , 312 , 321 123,132,213,231,312,321 123,132,213,231,312,321
【例】 4 4 4元排列: 2431 2431 2431从左到右,顺序(从小到大)的数对有: 24 , 23 24,23 24,23;逆序(从大到小)的数对有 21 , 43 , 41 , 31 21,43,41,31 21,43,41,31
- 排列中逆序的数对的数目称为这个排列的逆序数,比如上面例子中的逆序数为4,逆序数记作 τ \tau τ,比如上面例子记作 τ ( 2431 ) = 4 \tau(2431)=4 τ(2431)=4
2.2 排列的奇偶性
把逆序数是偶数的排列称为偶排列,逆序数是奇数的排列称为奇排列,比如刚才例子中的排列2431就是偶排列。
我们将偶排列2431的4和1交换位置,其余的数不动,我们称这样的变换为一个对换,记作 ( 4 , 1 ) (4,1) (4,1),对换后变成排列2134, τ ( 2134 ) = 1 \tau(2134)=1 τ(2134)=1,所以2134是一个奇排列。
【定理1】对换会改变排列的奇偶性。
【证】先看对换的两个数相邻的情形
. . . p . . . i j . . . q . . . ...p...ij...q... ...p...ij...q...(排列1)
对换 ( i , j ) (i,j) (i,j)后 . . . p . . . j i . . . q . . . ...p...ji...q... ...p...ji...q...(排列2)
排列(1)与(2)的逆序数就相差1,所以排列(1)和(2)的奇偶性相反,
一般情形, . . . i k 1 . . . k s j . . . ...ik_{1}...k_{s}j... ...ik1...ksj...(排列3)
对换 ( i , j ) (i,j) (i,j)后 . . . j k 1 . . . k s i . . . ...jk_{1}...k_{s}i... ...jk1...ksi...(排列4)
排列(3)到排列(4)相当于做若干次对换 ( i , k 1 ) , . . . , ( i , k s ) , ( i , j ) (i,k_{1}),...,(i,k_{s}),(i,j) (i,k1),...,(i,ks),(i,j)变成 . . . k 1 . . . k s j i . . . ...k_{1}...k_{s}ji... ...k1...ksji...,
再经过对换 ( j , k s ) , . . . , ( j , k 1 ) (j,k_{s}),...,(j,k_{1}) (j,ks),...,(j,k1)变成 . . . j k 1 . . . k s i . . . ...jk_{1}...k_{s}i... ...jk1...ksi...,排列(3)变成排列(4)经过 s + 1 + s = 2 s + 1 , s ∈ N + s+1+s=2s+1,s\in\mathbb{N}^{+} s+1+s=2s+1,s∈N+次变换,经过奇数次相邻两数对换,从而排列(3)与(4)奇偶性相反。
12345是偶排列,将25143( τ ( 25143 ) = 5 \tau(25143)=5 τ(25143)=5,奇排列)通过对换变成12345,25143(5,3)→23145(3,1)→21345(2,1)→12345
【定理2】任一 n n n元排列 j 1 , j 2 , . . . , j n j_{1},j_{2},...,j_{n} j1,j2,...,jn与 1 , 2 , . . . , n 1,2,...,n 1,2,...,n可以经过一系列的对换互变,且所做对换的次数与 j 1 , j 2 , . . . , j n j_{1},j_{2},...,j_{n} j1,j2,...,jn有相同的奇偶性。
【证】 j 1 , j 2 , . . . , j n j_{1},j_{2},...,j_{n} j1,j2,...,jn经过 s s s次对换变成 1 , 2 , . . . , n 1,2,...,n 1,2,...,n(偶排列),设 j 1 , j 2 , . . . , j n j_{1},j_{2},...,j_{n} j1,j2,...,jn是奇排列,则 s s s必为奇数,设 j 1 , j 2 , . . . , j n j_{1},j_{2},...,j_{n} j1,j2,...,jn是偶排列,则 s s s必为偶数。
2.3 n n n阶行列式的定义
【定义1】 n n n阶行列式:
∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}
a11a21...an1a12a22...an2............a1na2n...ann
n n n阶行列是 n ! n! n!项的代数和,其中每一项是不同行和不同列的 n n n个元素的乘积,每一项按行指标成自然序排好位置,当列指标形成的排列是偶排列时,该项带正号,当列指标形成的排列是奇排列的时候,该项带负号。
比如二阶行列式 ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 = ∑ j 1 j 2 ( − 1 ) τ ( j 1 j 2 ) a 1 j 1 a 2 j 2 \begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}=\sum\limits_{j_{1}j_{2}}(-1)^{\tau(j_{1}j_{2})}a_{1j_{1}}a_{2j_{2}} a11a21a12a22 =a11a22−a12a21=j1j2∑(−1)τ(j1j2)a1j1a2j2
则 ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∑ j 1 j 2 . . . j n a 1 j 1 ( − 1 ) τ ( j 1 j 2 . . . j n ) a 2 j 2 . . . a n j n \begin{vmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn}\\ \end{vmatrix}=\sum\limits_{j_{1}j_{2}...j_{n}}a_{1j_{1}}(-1)^{\tau(j_{1}j_{2}...j_{n})}a_{2j_{2}}...a_{nj_{n}}
a11a21...an1a12a22...an2............a1na2n...ann
=j1j2...jn∑a1j1(−1)τ(j1j2...jn)a2j2...anjn(行指标按自然序排好)
设矩阵 A = ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ) \textbf{A}=\begin{pmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ...&...&...\\ a_{n1} & a_{n2} & ... & a_{nn} \end{pmatrix} A=
a11a21...an1a12a22...an2............a1na2n...ann
,该矩阵可简记为简记成 A = ( a i j ) \textbf{A}=(a_{ij}) A=(aij),其中 a i j a_{ij} aij是第 i i i行第 j j j列的交叉位置元素即 A \textbf{A} A的 ( i , j ) (i,j) (i,j)元,则上述行列式也可以记作 n n n阶矩阵的阶行列式,可记为 ∣ A ∣ |\textbf{A}| ∣A∣或 det A \det\textbf{A} detA
- 1阶行列式: ∣ a ∣ = a |a|=a ∣a∣=a
- 2阶行列式: ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 = ∑ j 1 j 2 ( − 1 ) τ ( j 1 j 2 ) a 1 j 1 a 2 j 2 \begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}=\sum\limits_{j_{1}j_{2}}(-1)^{\tau(j_{1}j_{2})}a_{1j_{1}}a_{2j_{2}} a11a21a12a22 =a11a22−a12a21=j1j2∑(−1)τ(j1j2)a1j1a2j2
- 3阶行列式:3元排列
偶排列:123,231,312
奇排列:132,213,321
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 \begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix}=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31} a11a21a31a12a22a32a13a