基于yolov10的路面裂缝检测数据集训练模型对比

YOLOv9请移步
基于yolov9的路面裂缝检测数据集训练模型对比
YOLOv11请移步
基于yolov11的路面裂缝检测数据集训练模型对比

1.引言

目标检测是计算机视觉领域的核心任务之一,而YOLO(You Only Look Once)框架因其高效性与准确性成为该领域的代表性算法。自Redmon等人于2016年提出YOLOv1以来[1],该系列通过多尺度预测、特征金字塔网络等技术持续优化,在保持实时性的同时显著提升检测精度。作为单阶段检测器,YOLO通过端到端架构将目标定位与分类统一,在自动驾驶、工业质检等领域获得广泛应用。其设计思想对轻量化模型开发具有重要参考价值。

2.YOLOv10概述

YOLOv10是由清华大学研究团队提出的实时目标检测框架,通过消除非极大值抑制(NMS)依赖和优化模型架构实现了端到端检测能力。其核心技术包括一致双重分配策略(训练时一对多匹配提供丰富监督,推理时一对一匹配避免冗余预测)[2],以及效率-精度协同优化设计(轻量级分类头、空间-通道解耦下采样、大核卷积等)[3]。该框架提供YOLOv10n/s/m/l/x五种变体,在COCO数据集上,YOLOv10-S比RT-DETR-R18快1.8倍且参数减少2.8倍,YOLOv10-B相比YOLOv9-C延迟降低46%[4],适用于自动驾驶、工业检测等实时场景。

3.实验设计

本文将对比YOLOv10中YOLOv10-n、YOLOv10-s、YOLOv10-l与YOLOv10-x四个参数模型在同一数据集与同样轮数下的性能表现。选择的数据集为河北工业大学开源,发表在Data in Brief期刊中的UAV-PDD2023数据集,其用于道路破损检测[5-6]。数据集包含2440张三通道JPG格式图像,以及对应的VOC格式标注文件,图像规格为2592×1944,图像中标记了六种类型。

表1 模型训练参数

YOLOv10-nYOLOv10-sYOLOv10-lYOLOv10-x
训练轮数(epochs)300300300300
超参数(hyp)YOLOv11 defaultYOLOv11 defaultYOLOv11 defaultYOLOv11 default
权重模型yolo10n.ptyolo10s.ptyolo10l.ptyolo10x.pt
模型大小5.5MB15.7MB49.7MB61.1MB

4.实验结果

1.yolov10-n的混淆矩阵

yolov10-n

2.yolov10-s的混淆矩阵

yolov10-s

3.yolov10-l的混淆矩阵

yolov10-l

4.yolov10-x的混淆矩阵

yolov10-x

5.yolov10-n的F1值曲线

yolov10-n

6.yolov10-s的F1值曲线

yolov10-s

7.yolov10-l的F1值曲线

请添加图片描述

8.yolov10-x的F1值曲线

请添加图片描述

9.yolov10-n的Precision曲线

请添加图片描述

10.yolov10-s的Precision曲线

请添加图片描述

11.yolov10-l的Precision曲线

请添加图片描述

12.yolov10-x的Precision曲线

请添加图片描述

13.yolov10-n的PR曲线

请添加图片描述

14.yolov10-s的PR曲线

请添加图片描述

15.yolov10-l的PR曲线

请添加图片描述

16.yolov10-x的PR曲线

请添加图片描述

17.yolov10-n的Recall曲线

请添加图片描述

18.yolov10-s的Recall曲线

请添加图片描述

19.yolov10-l的Recall曲线

请添加图片描述

20.yolov10-x的Recall曲线

请添加图片描述

21.yolov10-n的训练识别可视化图

请添加图片描述

22.yolov10-s的训练识别可视化图

请添加图片描述

23.yolov10-l的训练识别可视化图

请添加图片描述

24.yolov10-x的训练识别可视化图

请添加图片描述

25.yolov10-n的训练参数可视化图

请添加图片描述

26.yolov10-s的训练参数可视化图

请添加图片描述

27.yolov10-l的训练参数可视化图

请添加图片描述

28.yolov10-x的训练参数可视化图

请添加图片描述

参考文献:
[1]Redmon J, et al. You Only Look Once: Unified, Real-Time Object Detection. CVPR 2016.
[2]YOLOv10:实时端到端物体检测[EB/OL]. (2024-9-27) [2025-3-4].
https://docs.ultralytics.com/zh/models/yolov10
[3]新一代目标检测来了:YOLOv10 | 理论概要[EB/OL]. (2024-5-21) [2025-3-4].
https://blog.csdn.net/weixin_38739735/article/details/139364505
[4]YOLOv10开源,高效轻量实时端到端目标检测新标准,速度提升46%[EB/OL]. (2024-6-5) [2025-3-4].https://blog.csdn.net/nulifancuoAI/article/details/139455710
[5]Haohui Y ,Junfei Z .UAV-PDD2023: A benchmark dataset for pavement distress detection based on UAV images[J].Data in Brief,2023,51109692-109692.
[6]【开源数据集】无人机道路破损检测数据集UAV-PDD2023[EB/OL]. (2024-07-04)[2025-3-4]. https://blog.csdn.net/hzg19930513/article/details/140178467.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值