YOLOv9请移步
基于yolov9的路面裂缝检测数据集训练模型对比
YOLOv10请移步
基于yolov10的路面裂缝检测数据集训练模型对比
1.引言
YOLO(You Only Look Once)是目标检测领域的一项突破性技术。在计算机视觉的广袤天地里,目标检测如同在繁杂世界中精准定位宝藏。YOLO的出现,犹如一颗璀璨之星照亮了这片领域。传统的目标检测方法往往流程复杂且耗时,而YOLO以其独特的单阶段检测方式,能快速且高效地检测出图像中的目标。它像一个敏锐的观察者,只需一次扫视就能确定目标的位置与类别,这不仅大大提高了检测速度,也在诸多实际应用场景中展现出巨大潜力,从安防监控到自动驾驶等领域都有它的身影。
2.YOLOv11概述
YOLOv11是由Ultralytics公司开发的新一代目标检测算法,在YOLO系列的基础上进行了显著的架构和训练方法改进。它结合了改进的模型结构设计、增强的特征提取技术和优化的训练方法,提供了令人印象深刻的速度、准确性和效率。YOLOv11在COCO数据集上实现了更高的平均精度(mAP)得分,同时比YOLOv8减少了22%的参数,展示了卓越的计算效率。此外,它引入了新的架构元素如C3k2和C2PSA模块,提升了特征提取和处理能力。这些改进使得YOLOv11在各种计算机视觉任务中表现出显