数论扩展欧几里德基础习题(4.15)

https://www.luogu.org/problem/lists?name=%E5%90%8C%E4%BD%99%E6%96%B9%E7%A8%8B&orderitem=pid&tag=

题目:

题目描述

求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解。

输入

输入只有一行,包含两个正整数 a, b,用一个空格隔开。

输出

输出只有一行,包含一个正整数 x0,即最小正整数解。输入数据保证一定有解。

样例输入

3 10

样例输出

7

思路:对题目中的式子进行变形可以得到ax - by = 1.可用扩展欧几里德算出一组x,y

由于保证数据肯定有解,可知gcd(a,b) = 1

由书中可知 x` = x + kb`,y` = y + k a`.其中(a` = a/gcd(a,b),b` = b / gcd(a,b) )

long long temp = b / d;/*注:因为要求最小,依旧要满足方程,那么要保证当x改变,依旧是成立的。而b / d 作为x改变值,是能使得方程成立的最小值(如果肯能是负数要换成整数)*/
    x = (x % temp + temp) % temp;的方法确保是最小的整数解

get

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <sstream>
#include <string>
#include <algorithm>
#include <list>
#include <map>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <cstdlib>
using namespace std;
void gcd(long long a,long long b,long long &d,long long &x,long long &y)
{
    if(!b)
    {
        d = a,x = 1,y = 0;
    }
    else {
        gcd(b,a%b,d,y,x);
        y -= x *(a/b);
    }
}
int main()
{
   // freopen("in.txt","r",stdin);
    long long a,b;
    scanf("%lld%lld",&a,&b);
    long long d,x,y;
    gcd(a,b,d,x,y);
    long long temp = b / d;
    x = (x % temp + temp) % temp;
    printf("%lld\n",x);
    return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值