一个环,A在x处,B在y处,A与B约定延同一方向走,A每次走m米,B每次走n米,环长L米,问至少他们走几次能碰面,还是永远不能见面?
//扩展欧几里得
#include<iostream>
#include<cstring>
#include<math.h>
#include<algorithm>
#include<stdio.h>
using namespace std;
typedef long long ll;
ll ex_gcd(ll a, ll b, ll &x, ll &y){
if(!b){
x = 1;
y = 0;
return a;
}
ll d = ex_gcd(b, a%b, x, y);
ll t = x;
x = y;
y = t - (a/b) * y;
return d;
}
void solve(ll a, ll b, ll c){
ll x, y;
ll d = ex_gcd(a, b, x, y); // d是 a,b最大公约数
if( c % d ){ //无解情况
cout << "Impossible" << endl;
return ;
}
x = x * c / d; // 求一个解 因为你之前求的 gcd(a,b)的解,所以现在需要乘c。
ll t = b / d;
if(t < 0)
t = -t;
x = (x%t + t) % t; //求x的最小正整数解
cout << x << endl;
return ;
}
int main(){
int x, y, m, n, L;
while(cin >> x >> y >> m >> n >> L){
solve(m-n, L, y-x);
}
return 0;
}
拓展欧几里得例题
最新推荐文章于 2022-09-04 10:12:08 发布