最长下降子序列 + 最长的方案数

这是一篇关于计算最长下降子序列长度及其不同方案数的算法文章。通过动态规划解决O(n^2)时间复杂度的问题,利用两个状态转移方程分别统计最长下降子序列的长度和方案数。在C++代码中,使用了数组和哈希映射辅助实现。
摘要由CSDN通过智能技术生成
链接:http://exam.upc.edu.cn/problem.php?id=1824

题意:求最长下降子序列的长度,和该长度的最长下降子序列有多少个

思路:o(n^2)求最长下降子序列,统计个数时两个状态转移方程一是统计个数的通用方程:if(a[i] < a[j] && dp[i] == dp[j + 1])cnt[i] += cnt[j]

另一个是如果当前点和之前的点是相等的,且dp[i] == dp[j]那么当前点的所有情况中一定是包括了之前点的方案数,大于等于之前的点。固清空之前点的情况,保留当前点的结果

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <sstream>
#include <string>
#include <algorithm>
#include <list>
#include <map>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <cstdlib>
using namespace std;
map<int,int>mapp;
int a[5005];
int dp[5005];
int cnt[5005];
int main()
{
    //freopen("in.txt","r",stdin);
    int n;
    scanf("%d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值