概率论之概率dp与期望的极限求解

小明玩纸牌游戏,每晚获胜概率为p,需获胜局数超过p才能开心睡觉。利用概率dp求解每晚失败概率Q,进而计算玩牌天数期望EX=1/Q。通过概率状态转移方程分析,解决此类问题。
摘要由CSDN通过智能技术生成

http://acm.hust.edu.cn/vjudge/problem/35396

题意:小明玩儿纸牌,每盘获胜的概率为p。小明只有当该晚的获胜局数严格大于p时才回去高兴的睡觉。小明每晚最多只能玩儿n次游戏,如果获胜比例一直小于p,就只能垂头丧气去睡觉,并以后都不玩儿了。求小明玩儿牌天数的期望。

解析:可以独立的求出小明每晚失败的概率。利用概率dp,设dp[i][j]表示前i局中赢的概率都没超过p,且赢了j次。那么最终失败肯定是已经玩儿了n此游戏 = dp[n][0] + dp[n][1] + ……+dp[n][n -1] 因为p小于1,不可能dp[n][n] > 0.当j / i <= p有状态方程 dp[i][j] = dp[i - 1][j] * (1 - p ) + dp[i - 1][j - 1]  * p,注意边界处理dp[0][0] = 1;最后求出每晚输了的概率为Q。那么小明玩儿牌的天数为:极限Q * 1 + (1-Q)*Q * 2 + (1-Q)^2 * Q * 3 ……

然后利用高中数学的知识.另s = EX / Q = 1 + 2 * (1 - Q) + 3 * (1 - Q) ^2……

s * (1 - Q) = 1 * (1 - Q )  + 2 * (1- Q ) ^2……

解得EX = 1 / Q

代码:

#include <iostream>
#include <cstdio>
#i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值