http://acm.hust.edu.cn/vjudge/problem/35396
题意:小明玩儿纸牌,每盘获胜的概率为p。小明只有当该晚的获胜局数严格大于p时才回去高兴的睡觉。小明每晚最多只能玩儿n次游戏,如果获胜比例一直小于p,就只能垂头丧气去睡觉,并以后都不玩儿了。求小明玩儿牌天数的期望。
解析:可以独立的求出小明每晚失败的概率。利用概率dp,设dp[i][j]表示前i局中赢的概率都没超过p,且赢了j次。那么最终失败肯定是已经玩儿了n此游戏 = dp[n][0] + dp[n][1] + ……+dp[n][n -1] 因为p小于1,不可能dp[n][n] > 0.当j / i <= p有状态方程 dp[i][j] = dp[i - 1][j] * (1 - p ) + dp[i - 1][j - 1] * p,注意边界处理dp[0][0] = 1;最后求出每晚输了的概率为Q。那么小明玩儿牌的天数为:极限Q * 1 + (1-Q)*Q * 2 + (1-Q)^2 * Q * 3 ……
然后利用高中数学的知识.另s = EX / Q = 1 + 2 * (1 - Q) + 3 * (1 - Q) ^2……
s * (1 - Q) = 1 * (1 - Q ) + 2 * (1- Q ) ^2……
解得EX = 1 / Q
代码:
#include <iostream>
#include <cstdio>
#i