AdaBoost元算法 —— 理论

在做重要决定时,大家可能都会考虑吸取多个专家而不是一个人的意见。机器学习也可以采用这种方式,这就是元算法(meta-algorithm)背后的思路。元算法是对其他算法进行组合的一种方式。AdaBoost便是一种最流行的元算法,该方法是机器学习工具箱中最强有力的工具之一。

目录

基于数据多重抽样的分类器

 bagging:基于数据随机重抽样的分类器构建方法

boosting

训练算法:基于错误提升分类器的性能


基于数据多重抽样的分类器

我们可以将不同分类器组合起来,而这种组合结果称为集成方法或者元算法

使用集成方法时可以有多种形式:

  • 不同算法的集成
  • 同一算法在不同配置下的集成
  • 数据集的不同部分分配给不同分类器之后的集成

AdaBoost

优点:泛化错误率低,易编码,可以应用在大部分分类器上,五参数调整

缺点:对离群点敏感

适用数据类型:数值型和标称型数据

 bagging:基于数据随机重抽样的分类器构建方法

自举汇聚法(bootstrap aggregating),也称bagging方法,是在从原始数据集选择S次后得到S个新数据集的一种技术。新数据集和原数据集的大小相等。每个数据集都是通过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值