黄金分割搜索算法(Golden Section Search)是一种用于无约束优化问题的搜索算法,其基本思想是通过在一个区间内寻找函数的极值点。算法的核心是将搜索区间按照黄金分割比例分成两部分,并根据函数值的比较来确定新的搜索区间,不断缩小搜索范围,直到满足收敛条件为止。
具体算法步骤如下:
- 给定初始的搜索区间[a, b],计算黄金分割点x1 = a + (b - a) / φ 和x2 = a + (b - a) / φ^2,其中φ是黄金分割比例(约为0.618)。
- 计算函数在x1和x2处的值f(x1)和f(x2)。
- 如果f(x1) > f(x2),则更新搜索区间为[a, x2];否则,更新搜索区间为[x1, b]。
- 重复步骤2和步骤3,直到满足收敛条件为止。
黄金分割搜索算法的优点包括:
- 适用于连续且单峰函数的优化问题。
- 算法简单,不需要求导,只需要进行函数的比较和计算。
- 搜索过程是逐步逼近的,可以保证找到全局最优解。
然而,黄金分割搜索算法也存在一些缺点:
- 算法的收敛速度较慢,特别是在搜索区间长度较大的情况下。
- 对于多峰函数的优化问题,可能陷入局部最优解。 </