题目描述:
给定两个升序排序的有序数组A和B,以及一个目标值x。数组下标从0开始。
请你求出满足A[i] + B[j] = x的数对(i, j)。
数据保证有唯一解。
输入格式
第一行包含三个整数n,m,x,分别表示A的长度,B的长度以及目标值x。
第二行包含n个整数,表示数组A。
第三行包含m个整数,表示数组B。
输出格式
共一行,包含两个整数 i 和 j。
数据范围
数组长度不超过100000。
同一数组内元素各不相同。
1≤数组元素≤10^9
输入样例:
4 5 6
1 2 4 7
3 4 6 8 9
输出样例:
1 1
分析:
很容易想到暴力的做法,两重循环依次枚举两个数组的位置,看能否找到和为x的位置。但是这种做法其一没有用到两个数组的升序性质,其二数据范围是十万,超过nlogn的算法都会超时,于是寻求改进之法。
方法一:哈希映射
遍历一遍a数组,将每个元素的值映射为在a中的下标,由于没有重复元素,且数据量才十万,哈希映射不会占用太大空间且可行。之后再遍历一遍b数组,看看x-b[i]是否在a中出现过。空间换时间,时空复杂度均为O(n)。
#include <iostream>
#include <unordered_map>
using namespace std;
const int maxn = 100005;
int a[maxn],b[maxn];
unordered_map<int,int> um;
int main(){
int n,m,x,t;
scanf("%d%d%d",&n,&m,&x);
for(int i = 0;i < n;i++) scanf("%d",&a[i]);
for(int i = 0;i < m;i++) scanf("%d",&t),um[t] = i;
for(int i = 0;i < n;i++){
int u = x - a[i];
if(um.count(u)) printf("%d %d\n",i,um[u]);
}
return 0;
}
方法二:二分
方法一使用哈希表同样没有利用上数组有序的性质,并且由于查找某元素是否在map中同样耗时,所以效率并不高。而由有序的性质很容易想到遍历a时可用二分法在b中查找x-a[i]的位置。时间复杂度为O(nlogn)。
#include <iostream>
using namespace std;
const int maxn = 100005;
int a[maxn],b[maxn];
int main(){
int n,m,x;
scanf("%d%d%d",&n,&m,&x);
for(int i = 0;i < n;i++) scanf("%d",&a[i]);
for(int i = 0;i < m;i++) scanf("%d",&b[i]);
for(int i = 0;i < n;i++){
int u = a[i];
int l = 0,r = m - 1;
while(l < r){
int mid = l + r >> 1;
int v = b[mid];
if(u + v < x) l = mid + 1;
else if(u + v > x) r = mid - 1;
else{
l = mid;
break;
}
}
if(b[l] + u == x) printf("%d %d\n",i,l);
}
return 0;
}
方法三:双指针
令指针p指向数组a的第一个位置,指针q指向数组b的最后一个位置,一旦a[p] + b[q]比x大,说明要减小其中一方的值,q--即可,如果比x小,p++即可,时间复杂度为O(n)。
思考下为什么这次的双指针要分别指向两个数组的开始和结束位置?因为若是开始p,q都指向数组开头,两数和小于x时,是要该执行p++,还是q++呢?当两数和大于x时,p,q肯定不能再往回移动了,而采取首尾指针的方法就能很好的解决了这一问题。
#include <iostream>
using namespace std;
const int maxn = 100005;
int a[maxn],b[maxn];
int main(){
int n,m,x;
scanf("%d%d%d",&n,&m,&x);
for(int i = 0;i < n;i++) scanf("%d",&a[i]);
for(int i = 0;i < m;i++) scanf("%d",&b[i]);
int p = 0,q = m - 1;
while(p < n && q >= 0){
if(a[p] + b[q] > x) q--;
else if(a[p] + b[q] < x) p ++;
else{
printf("%d %d\n",p,q);
p++;
q--;
}
}
return 0;
}