黑魔法师之门
(magician.pas/c/cpp)
题目描述
经过了16个工作日的紧张忙碌,未来的人类终于收集到了足够的能源。然而在与Violet星球的战争中,由于Z副官的愚蠢,地球的领袖applepi被邪恶的黑魔法师Vani囚禁在了Violet星球。为了重启Nescafé这一宏伟的科技工程,人类派出了一支由XLk、Poet_shy和lydrainbowcat三人组成的精英队伍,穿越时空隧道,去往Violet星球拯救领袖applepi。
applepi被囚禁的地点只有一扇门,当地人称它为“黑魔法师之门”。这扇门上画着一张无向无权图,而打开这扇门的密码就是图中每个点的度数大于零且都是偶数的子图的个数对1000000009取模的值。此处子图 (V, E) 定义为:点集V和边集E都是原图的任意子集,其中E中的边的端点都在V中。
但是Vani认为这样的密码过于简单,因此门上的图是动态的。起初图中只有N个顶点而没有边。Vani建造的门控系统共操作M次,每次往图中添加一条边。你必须在每次操作后都填写正确的密码,才能够打开黑魔法师的牢狱,去拯救伟大的领袖applepi。
输入格式
第一行包含两个整数N和M。
接下来M行,每行两个整数A和B,代表门控系统添加了一条无向边 (A, B)。
输出格式
输出一共M行,表示每次操作后的密码。
样例输入
4 8
3 1
3 2
2 1
2 1
1 3
1 4
2 4
2 3
样例输出
0
0
1
3
7
7
15
31
样例说明
第三次添加之后,存在一个满足条件的子图 {1, 2, 3}(其中1, 2, 3是数据中边的标号)。
第四次添加之后,存在三个子图 {1, 2, 3},{1, 2, 4},{3, 4}。
……
数据范围与约定
对于30% 的数据,N, M≤10。
对于100% 的数据,N≤200000,M≤300000。
考试的时候第一眼觉得是跟欧拉回路啥的有关系,但是没什么高效的算法能通过欧拉回路统计这个子集个数。
再进行观察,其实问题问的是一个环,可以用并查集维护连通性来判断。
考虑每一条边对答案所造成的影响,原来的环都可以通过这个边,即原答案*=2;这个边又联通两个本来就在同一个环上的两点,即又新增了一个环;综上,一个新的边(x,y)对于本来就联通的x,y造成的影响就是ans*2+1.
当然,如果不连通就不更新答案。
思路大致是这样的吧- -据说有更严谨的证明,不是很想去搞,这种题也就画画图的事。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
//#include<cmath>
#define mod 1000000009ll
using namespace std;
typedef long long ll;
inline ll read()
{
ll bj=1ll;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-')bj=-1ll;
ch=getchar();
}
ll ret=0ll;
while(ch>='0'&&ch<='9')ret=ret*10ll+ch-'0',ch=getchar();
return ret*bj;
}
ll n,m,fa[500005]={0},ans=0ll;
ll getfa(ll x)
{
if(x==fa[x])return x;
return fa[x]=getfa(fa[x]);
}
void work()
{
n=read();m=read();
for(ll i=1;i<=n;i++)fa[i]=i;
for(ll i=1;i<=m;i++)
{
ll x=read(),y=read();
ll f1=getfa(x),f2=getfa(y);
if(f1!=f2)fa[f1]=f2;
else ans=(ans*2+1)%mod;
printf("%lld\n",ans%mod);
}
}
int main()
{
work();
return 0;
}
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
//#include<cmath>
#define mod 1000000009ll
using namespace std;
typedef long long ll;
inline ll read()
{
ll bj=1ll;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-')bj=-1ll;
ch=getchar();
}
ll ret=0ll;
while(ch>='0'&&ch<='9')ret=ret*10ll+ch-'0',ch=getchar();
return ret*bj;
}
ll n,m,fa[500005]={0},ans=0ll;
ll getfa(ll x)
{
if(x==fa[x])return x;
return fa[x]=getfa(fa[x]);
}
void work()
{
n=read();m=read();
for(ll i=1;i<=n;i++)fa[i]=i;
for(ll i=1;i<=m;i++)
{
ll x=read(),y=read();
ll f1=getfa(x),f2=getfa(y);
if(f1!=f2)fa[f1]=f2;
else ans=(ans*2+1)%mod;
printf("%lld\n",ans%mod);
}
}
int main()
{
work();
return 0;
}