Description
SC省MY市有着庞大的地下水管网络,嘟嘟是MY市的水管局长(就是管水管的啦),嘟嘟作为水管局长的工作就是:每天供水公司可能要将一定量的水从x处运往y处,嘟嘟需要为供水公司找到一条从A至B的水管的路径,接着通过信息化的控制中心通知路径上的水管进入准备送水状态,等到路径上每一条水管都准备好了,供水公司就可以开始送水了。嘟嘟一次只能处理一项送水任务,等到当前的送水任务完成了,才能处理下一项。
在处理每项送水任务之前,路径上的水管都要进行一系列的准备操作,如清洗、消毒等等。嘟嘟在控制中心一声令下,这些水管的准备操作同时开始,但由于各条管道的长度、内径不同,进行准备操作需要的时间可能不同。供水公司总是希望嘟嘟能找到这样一条送水路径,路径上的所有管道全都准备就绪所需要的时间尽量短。嘟嘟希望你能帮助他完成这样的一个选择路径的系统,以满足供水公司的要求。另外,由于MY市的水管年代久远,一些水管会不时出现故障导致不能使用,你的程序必须考虑到这一点。
不妨将MY市的水管网络看作一幅简单无向图(即没有自环或重边):水管是图中的边,水管的连接处为图中的结点。
在处理每项送水任务之前,路径上的水管都要进行一系列的准备操作,如清洗、消毒等等。嘟嘟在控制中心一声令下,这些水管的准备操作同时开始,但由于各条管道的长度、内径不同,进行准备操作需要的时间可能不同。供水公司总是希望嘟嘟能找到这样一条送水路径,路径上的所有管道全都准备就绪所需要的时间尽量短。嘟嘟希望你能帮助他完成这样的一个选择路径的系统,以满足供水公司的要求。另外,由于MY市的水管年代久远,一些水管会不时出现故障导致不能使用,你的程序必须考虑到这一点。
不妨将MY市的水管网络看作一幅简单无向图(即没有自环或重边):水管是图中的边,水管的连接处为图中的结点。
Input
输入文件第一行为3个整数:N,M,Q分别表示管道连接处(结点)的数目、目前水管(无向边)的数目,以及你的程序需要处理的任务数目(包括寻找一条满足要求的路径和接受某条水管坏掉的事实)。
接下来M行,每行3个整数x,y和t,描述一条对应的水管。x和y表示水管两端结点的编号,t表示准备送水所需要的时间。我们不妨为结点从1至N编号,这样所有的x和y都在范围[1,N]内。
接下来Q行,每行描述一项任务。其中第一个整数为k:若k=1则后跟两个整数A和B,表示你需要为供水公司寻找一条满足要求的从A到B的水管路径;若k=2,则后跟两个整数x和y,表示直接连接x和y的水管宣布报废(保证合法,即在此之前直接连接x和y尚未报废的水管一定存在)。
接下来M行,每行3个整数x,y和t,描述一条对应的水管。x和y表示水管两端结点的编号,t表示准备送水所需要的时间。我们不妨为结点从1至N编号,这样所有的x和y都在范围[1,N]内。
接下来Q行,每行描述一项任务。其中第一个整数为k:若k=1则后跟两个整数A和B,表示你需要为供水公司寻找一条满足要求的从A到B的水管路径;若k=2,则后跟两个整数x和y,表示直接连接x和y的水管宣布报废(保证合法,即在此之前直接连接x和y尚未报废的水管一定存在)。
Output
按顺序对应输入文件中每一项k=1的任务,你需要输出一个数字和一个回车/换行符。该数字表示:你寻找到的水管路径中所有管道全都完成准备工作所需要的时间(当然要求最短)。
Sample Input
4 4 41 2 22 3 33 4 21 4 21 1 42 1 41 1 41 1 4
Sample Output
233
Hint
【数据范围】
对于60%的数据,满足N≤1000,M≤100000,Q≤100000;
对于100%的数据,满足N≤100000,M≤1000000,Q≤100000;
对于60%的数据,满足N≤1000,M≤100000,Q≤100000;
对于100%的数据,满足N≤100000,M≤1000000,Q≤100000;
动态树。
删除如果要做的话会非常非常麻烦,
建议离线处理。
即倒着处理询问,删边改为加边。
代码如下:
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
struct LCT{
int data;
int l;
int fa;
int r;
int rev;
int Max;
int OnPath;
}Tree[2000005];
inline void update(int x){
Tree[x].Max=x;
if(Tree[Tree[Tree[x].l].Max].data>Tree[Tree[x].Max].data)Tree[x].Max=Tree[Tree[x].l].Max;
if(Tree[Tree[Tree[x].r].Max].data>Tree[Tree[x].Max].data)Tree[x].Max=Tree[Tree[x].r].Max;
}
inline void pushdown(int x){
if(Tree[x].rev){
Tree[Tree[x].l].rev^=1;
Tree[Tree[x].r].rev^=1;
swap(Tree[x].l,Tree[x].r);
Tree[x].rev=0;
}
}
inline void Rotate(int x){
int y=Tree[x].fa;
int z=Tree[y].fa;
if(Tree[y].l==x){
Tree[y].l=Tree[x].r;
Tree[Tree[x].r].fa=y;
if(Tree[y].OnPath){
if(Tree[z].l==y)Tree[z].l=x;
if(Tree[z].r==y)Tree[z].r=x;
}
Tree[x].fa=z;
Tree[y].fa=x;
Tree[x].r=y;
if(!Tree[y].OnPath){
Tree[y].OnPath=1;
Tree[x].OnPath=0;
}
}
if(Tree[y].r==x){
Tree[y].r=Tree[x].l;
Tree[Tree[x].l].fa=y;
if(Tree[y].OnPath){
if(Tree[z].l==y)Tree[z].l=x;
if(Tree[z].r==y)Tree[z].r=x;
}
Tree[x].fa=z;
Tree[y].fa=x;
Tree[x].l=y;
if(!Tree[y].OnPath){
Tree[y].OnPath=1;
Tree[x].OnPath=0;
}
}
update(y);
}
inline void Splay(int x){
pushdown(x);
while(Tree[x].OnPath){
int y=Tree[x].fa;
int z=Tree[y].fa;
if(Tree[y].OnPath)pushdown(z);
pushdown(y);
pushdown(x);
if(!Tree[y].OnPath){
Rotate(x);
break;
}
if((Tree[z].l==y)==(Tree[y].l==x)){
Rotate(y);
Rotate(x);
}
else {
Rotate(x);
Rotate(x);
}
}
update(x);
}
inline void Access(int u){
int v=0;
while(u){
Splay(u);
Tree[Tree[u].r].OnPath=0;
Tree[v].fa=u;
Tree[u].r=v;
Tree[v].OnPath=1;
v=u;
u=Tree[u].fa;
update(v);
}
}
inline void Make_Root(int x){
Access(x);
Splay(x);
Tree[x].rev^=1;
}
inline void link(int x,int y){
Make_Root(x);
Tree[x].fa=y;
}
inline void cut(int x,int y){
Make_Root(x);
Access(y);
Splay(y);
Tree[Tree[y].l].fa=Tree[Tree[y].l].OnPath=0;
Tree[y].l=0;
update(y);
}
inline int query(int x,int y){
Make_Root(x);
Access(y);
Splay(y);
return Tree[y].Max;
}
int n,m,q;
struct Edge{
int x,y,c;
int id;
bool flag;
Edge(){
id=0;
flag=0;
}
}w[2000005];
bool cmp(Edge a,Edge b){
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
bool cmp1(Edge a,Edge b){
return a.c<b.c;
}
bool cmp2(Edge a,Edge b){
return a.id<b.id;
}
struct Q{
int t;
int x;
int y;
int id;
int ans;
}ques[2000005];
int Find(int x,int y){
int L=1;
int R=m;
while(L<=R){
int mid=(L+R)>>1;
if(w[mid].x<x||(w[mid].x==x&&w[mid].y<y))L=mid+1;
else if(w[mid].x==x&&w[mid].y==y)return mid;
else R=mid-1;
}
}
int father[2000005];
int getf(int k){
if(k==father[k])return k;
else father[k]=getf(father[k]);
}
inline int getint(){
char ch=getchar();
int k=1;
while(ch>'9'||ch<'0'){if(ch=='-')k=-1;ch=getchar();}
int ret=0;
while(ch<='9'&&ch>='0')ret=ret*10+ch-'0',ch=getchar();
return ret*k;
}
int main(){
n=getint();
m=getint();
q=getint();
for(int i=1;i<=n;i++)father[i]=i;
for(int i=1;i<=m;i++){
w[i].x=getint();
w[i].y=getint();
w[i].c=getint();
if(w[i].x>w[i].y)swap(w[i].x,w[i].y);
}
sort(w+1,w+m+1,cmp1);
for(int i=1;i<=m;i++){
w[i].id=i;
Tree[i+n].data=w[i].c;
Tree[i+n].Max=i+n;
}
sort(w+1,w+m+1,cmp);
for(int i=1;i<=q;i++){
ques[i].t=getint();
ques[i].x=getint();
ques[i].y=getint();
if(ques[i].t==2){
if(ques[i].x>ques[i].y)swap(ques[i].x,ques[i].y);
int temp=Find(ques[i].x,ques[i].y);
w[temp].flag=1;
ques[i].id=w[temp].id;
}
}
int tot=0;
sort(w+1,w+m+1,cmp2);
for(int i=1;i<=m;i++){
if(!w[i].flag){
int tx=getf(w[i].x);
int ty=getf(w[i].y);
if(tx!=ty){
father[tx]=ty;
link(w[i].x,i+n);
link(i+n,w[i].y);
tot++;
if(tot==n-1)break;
}
}
}
for(int i=q;i;i--){
if(ques[i].t==1){
ques[i].ans=Tree[query(ques[i].x,ques[i].y)].data;
}
else {
int te=query(ques[i].x,ques[i].y);
if(Tree[te].data>w[ques[i].id].c){
cut(w[te-n].x,te);
cut(w[te-n].y,te);
link(ques[i].x,ques[i].id+n);
link(ques[i].id+n,ques[i].y);
}
}
}
for(int i=1;i<=q;i++)
if(ques[i].t==1)printf("%d\n",ques[i].ans);
return 0;
}