这是一道中等题,题目链接为:01 Matrix
题目描述:
现有一个只包含0和1的矩阵,找出每个元素最近的0的距离,并以矩阵的形式输出
相邻的元素之间的距离为1,相邻指的是上下左右,不包括对角线
样例1
input:
0 0 0
0 1 0
0 0 0
output:
0 0 0
0 1 0
0 0 0
样例二:
input:
0 0 0
0 1 0
1 1 1
output:
0 0 0
0 1 0
1 2 1
首先元素为0时,它对应的距离是0,与0相邻的1的距离值是1,不同的距离值之间可以形成一种层次关系,距离值为0的是第0层,距离值为1的是第1层,以此类推,并且对于层次为n(n>0)的元素,必定只与层次为n-1或n+1的元素相邻,于是,对于这道题,可以用BFS算法从第0层开始一层一层地往较高层遍历。
算法的步骤如下:
step1:首先设置一个空队列q,所有位置(i,j)的访问状态visit[i][j]为false,并且对应距离值d[i][j]为0
step2:所有为0的元素距离值为0,在第0层,将这些元素的位置(i,j)全部加入队列q中,同时设置访问状态visit[i][j]为true,距离d[i][j]为0
step3:只要队列非空,从队列头取出一个位置(i,j),检查所有相邻位置(i',j')的访问状态,如果为false,则该相邻位置的距离值d[i'][j'] = d[i][j] + 1,访问状态设为true,并将位置(i',j')加入队列q,重复步骤3,若队列空了,就结束,并返回矩阵d
c++代码如下:
class Solution {
private:
vector<vector<int>>visit,d;
queue<pair<int,int>>q;
pair<int,int>p;
int cur_i,cur_j;
int width,height;
void push_and_set(int row,int col){
if(row>=0&&row<height&&col>=0&&col<width&&!visit[row][col]){
d[row][col] = d[cur_i][cur_j] + 1;
visit[row][col] = 1;
q.push(make_pair(row,col));
}
}
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
height = matrix.size();
width = matrix[0].size();
visit = vector<vector<int>>(height,vector<int>(width));
d = vector<vector<int>>(height,vector<int>(width));
for(int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
if(matrix[i][j] == 0){
q.push(make_pair(i,j));
visit[i][j]=1;
d[i][j] = 0;
}
}
}
while(!q.empty()){
p = q.front();
q.pop();
cur_i = p.first;
cur_j = p.second;
push_and_set(cur_i - 1, cur_j);
push_and_set(cur_i + 1, cur_j);
push_and_set(cur_i, cur_j + 1);
push_and_set(cur_i, cur_j - 1);
}
return d;
}
};