软考系统分析师知识点三:应用数学

前言

今年报考了11月份的软考高级:系统分析师。

考试时间为:11月9日。

倒计时:34天。

目标:优先应试,其次学习,再次实践。

复习计划第一阶段:扫平基础知识点,仅抽取有用信息,可有缺失,但得过眼。

第二章下:应用数学

这部分内容比较繁杂,仅对其概念和公式做一些总结,不对具体解法和过程做过多深入。

2.7 - 2.12

内容总结

2.7 概率论与数理统计

  • 古典概率:事件发生的概率是该事件发生的次数与总试验次数的比值,公式为 P ( A ) = m n P(A) = \frac{m}{n} P(A)=nm

  • 概率的基本性质

    • 空集的概率为0: P ( ∅ ) = 0 P(\emptyset) = 0 P()=0
    • 样本空间的概率为1: P ( Ω ) = 1 P(\Omega) = 1 P(Ω)=1
    • 任何事件的概率介于0和1之间: 0 ≤ P ( A ) ≤ 1 0 \leq P(A) \leq 1 0P(A)1
    • 事件的补概率是1减去该事件的概率: P ( A ˉ ) = 1 − P ( A ) P(\bar{A}) = 1 - P(A) P(Aˉ)=1P(A)
    • 事件A不包含B的概率等于A的概率减去A与B交集的概率: P ( A − B ) = P ( A ) − P ( A ∩ B ) P(A - B) = P(A) - P(A \cap B) P(AB)=P(A)P(AB)
    • 如果B是A的子集,则A减去B的概率等于A的概率减去B的概率: P ( A − B ) = P ( A ) − P ( B ) P(A - B) = P(A) - P(B) P(AB)=P(A)P(B)
  • 条件概率与独立性

    • 条件概率是在事件A发生的条件下事件B发生的概率: P ( B ∣ A ) = P ( A ∩ B ) P (
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我码玄黄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值