前言
今年报考了11月份的软考高级:系统分析师。
考试时间为:11月9日。
倒计时:34天。
目标:优先应试,其次学习,再次实践。
复习计划第一阶段:扫平基础知识点,仅抽取有用信息,可有缺失,但得过眼。
第二章下:应用数学
这部分内容比较繁杂,仅对其概念和公式做一些总结,不对具体解法和过程做过多深入。
2.7 - 2.12
内容总结
2.7 概率论与数理统计
-
古典概率:事件发生的概率是该事件发生的次数与总试验次数的比值,公式为 P ( A ) = m n P(A) = \frac{m}{n} P(A)=nm
-
概率的基本性质:
- 空集的概率为0: P ( ∅ ) = 0 P(\emptyset) = 0 P(∅)=0
- 样本空间的概率为1: P ( Ω ) = 1 P(\Omega) = 1 P(Ω)=1
- 任何事件的概率介于0和1之间: 0 ≤ P ( A ) ≤ 1 0 \leq P(A) \leq 1 0≤P(A)≤1
- 事件的补概率是1减去该事件的概率: P ( A ˉ ) = 1 − P ( A ) P(\bar{A}) = 1 - P(A) P(Aˉ)=1−P(A)
- 事件A不包含B的概率等于A的概率减去A与B交集的概率: P ( A − B ) = P ( A ) − P ( A ∩ B ) P(A - B) = P(A) - P(A \cap B) P(A−B)=P(A)−P(A∩B)
- 如果B是A的子集,则A减去B的概率等于A的概率减去B的概率: P ( A − B ) = P ( A ) − P ( B ) P(A - B) = P(A) - P(B) P(A−B)=P(A)−P(B)
-
条件概率与独立性:
- 条件概率是在事件A发生的条件下事件B发生的概率: P ( B ∣ A ) = P ( A ∩ B ) P (