论文阅读笔记 ---《Explainable Framework for TextClassification 》

论文地址:https://arxiv.org/abs/1811.00196v2
论文名称:Towards Explainable NLP:A Generative Explanation Framework for TextClassification

摘要

现有机器学习可解释性研究倾向于分析输入和输出之间的联系,而会忽略通过提炼后的信息。本文提出了一个能够同时进行分类生成解释的框架,并且提出了可解释性因子风险最小化训练方法使得生成的解释更加合理。

通用可解释性框架(GEF)

GEF框架

可解释性因子(EF)定义为:
在这里插入图片描述
其中三个概率p都是各个分类器在groud-truth上的分量。公式说明,可解释性因子的目的是1.减小Golden Explaination和生成的Explaination之间的差距 2.减小解释生成器原始模型分类器的差距。

模型基本Loss定义为:
在这里插入图片描述
其中 L ( e g , S , Θ ) L(e_g,S,\Theta) L(eg,S,Θ)定义如下
在这里插入图片描述
其中 L p L_p Lp是解释生成器的损失,本文中用的是BLUE, L e L_e Le是分类器损失(这里的分类器应该指的只有图中的Predictor P,因为文中假设解释生成一侧的分类器是完美分类器)。为了防止梯度消失的问题,最终使用的Loss定义如下:
在这里插入图片描述
其中 L L L L p L_p Lp即生成器损失。

其他问题和解释

  1. 因为生成损失往往比分类损失大很多,在训练时当分类损失达到一定时候时(根据验证集效果确定),就停止更新分类器参数更新来避免过拟合。
  2. 使用GEF后,生成器生成的解释比直接用Basic-model生成解释效果更好(BLUE分更高),但当Golden Expaination很长的时候由于可能含有更多domain-specific词汇(词频低),所以更可能生成。后续可能考虑使用copy-mechanism (Gu et al., 2016) 来生成这些domain-specific词汇。
  3. 生成器生成的解释通常会比Golden Explanation更短,因为生成的解释越长,loss可能越大,所以GEF倾向于丢弃低语义信息的词,比如虚词,连接词等。后续可以考虑加入长度惩罚来解决。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
可解释的人工智能(explainable artificial intelligence,XAI)是指能够解释其决策过程和推理结果的人工智能系统。它为对人类用户透明且理解机器学习模型的方法提供了一个框架,从而能够更好地预测和预防事故。 事故预测是一种利用人工智能技术来提前发现潜在危险和减少事故发生率的方法。具有XAI特性的人工智能系统可以通过解释其决策背后的原因和依据,为用户提供更多观察和理解其工作方式的机会。 通过XAI技术,人们可以更准确地了解AI系统在预测和预防事故方面所依赖的数据和算法,以及其对不同特征和变量的注意力分配。这种透明性使用户能够评估系统的准确性和可靠性,并提供反馈来改善系统。 通过XAI的可视化工具,用户可以观察和分析模型在特定情况下是如何做出预测的。例如,使用热力图可以显示模型对不同因素的关注程度,用户可以从中了解到模型如何识别事故风险因素,并进行相应的依据和干预。 在事故预测方面,XAI可以提供几个关键好处。首先,它可以帮助用户理解模型是如何基于数据进行学习,从而提高对模型性能的信任度。其次,XAI可以帮助用户发现模型的潜在偏差或漏洞,并提供改进的反馈。此外,XAI还可以促进与用户之间的互动和共享知识,提高模型的可持续性和普适性。 总之,可解释的人工智能在事故预测中起到重要的作用,它通过透明和理解机器学习模型的方法,使用户能够更好地预测和预防事故。这将有助于提高安全性、降低风险,并在快速发展的人工智能领域中建立信任和合作关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值