PTA1001 3n+1猜想

卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

#include <stdio.h>

int main(int argc,const char* argv[])
{
    int num_i,counter;
    counter = 0;
    if(scanf("%d", &num_i) == 1)		//对scanf的返回值作处理否则在pta中会出现warning
    {
        while(num_i > 1)
        {   
            if(num_i%2)
                num_i = (num_i*3+1)/2;
            else
                num_i = num_i/2;
            counter++;
        }   
        printf("%d", counter);
    }
    else 
        printf("Failed to read integer.\n");		//如果没有成功读取到,则提示Failed to read integer
    return 0;
}

本题采取的思路,第一步判断num_i是否为1,不是则判断num_i的奇偶性,奇数则作(3*num_i+1)/2处理,偶数直接减一半,利用循环,用counter算出需要步骤,,特别值得注意的是,在pta中对scanf的返回值更严谨,也要求处理
下面再提供一些对scanf的返回值进行处理的其他方式
1.将返回值转换为void

//将scanf变为无返回值类型
(void)scanf("%d",&t); 
//这个方法可以忽略返回值,但是没办法抑制警告
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值