卡拉兹(Callatz)猜想:
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
#include <stdio.h>
int main(int argc,const char* argv[])
{
int num_i,counter;
counter = 0;
if(scanf("%d", &num_i) == 1) //对scanf的返回值作处理否则在pta中会出现warning
{
while(num_i > 1)
{
if(num_i%2)
num_i = (num_i*3+1)/2;
else
num_i = num_i/2;
counter++;
}
printf("%d", counter);
}
else
printf("Failed to read integer.\n"); //如果没有成功读取到,则提示Failed to read integer
return 0;
}
本题采取的思路,第一步判断num_i是否为1,不是则判断num_i的奇偶性,奇数则作(3*num_i+1)/2处理,偶数直接减一半,利用循环,用counter算出需要步骤,,特别值得注意的是,在pta中对scanf的返回值更严谨,也要求处理
下面再提供一些对scanf的返回值进行处理的其他方式
1.将返回值转换为void
//将scanf变为无返回值类型
(void)scanf("%d",&t);
//这个方法可以忽略返回值,但是没办法抑制警告