题目要求,给N个木棍,从中选3个,问能构成三角形的概率多大。
N<= 1e5.
木棍长度<=1e5.
注意事项:
直接把len开成1e5会TLE。
统计答案的时候可能会爆int。
删除非法情况。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const double PI = acos(-1.0);
struct Complex {
double x, y;
Complex(double _x=0.0,double _y = 0.0) {
x = _x;
y = _y;
}
Complex operator -(const Complex &b) const {
return Complex(x-b.x, y-b.y);
}
Complex operator +(const Complex &b) const {
return Complex(x+b.x, y+b.y);
}
Complex operator *(const Complex &b) const {
return Complex(x*b.x-y*b.y, x*b.y+y*b.x);
}
};
void change(Complex y[], int len) {
int i,j,k;
for(i = 1, j = len/2; i < len-1; i++) {
if(i < j) swap(y[i],y[j]);
k = len/2;
while(j >= k) {
j -= k;
k /= 2;
}
if(j < k) j += k;
}
}
void fft(Complex y[], int len, int on) {
change(y, len);
for(int h = 2; h <= len; h <<= 1) {
Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
for(int j = 0; j <= len; j+= h) {
Complex w(1,0);
for(int k = j; k < j+h/2; k++) {
Complex u = y[k];
Complex t = w*y[k+h/2];
y[k] = u+t;
y[k+h/2] = u-t;
w = w*wn;
}
}
}
if(on == -1)
for(int i = 0; i < len; i++)
y[i].x /= len;
}
const int N = 1e5+100;
Complex x1[8*N],x2[8*N];
ll a[N],num[N],b[N];
vector<ll>q;
ll sum[8*N];
int main() {
freopen("a.txt","r",stdin);
//ios::sync_with_stdio(0);
int T;
scanf("%d",&T);
while(T--) {
int n;
scanf("%d",&n);
memset(num,0,sizeof(num));
q.clear();
ll maxx = 0; //记录最大值,防TLE
for(int i = 1; i <= n; i++) {
ll x;
scanf("%lld",&x);
maxx = max(maxx,x);
num[x]++;
q.push_back(x);
}
int len1 = maxx+1;
int len = 1;
int len2 = maxx+1;
for(int i = 0; i < len1; i++) {
a[i] = num[i];
b[i] = num[i];
}
while(len < len1*2 || len < len2*2) len <<= 1;
for(int i = 0; i < len1; i++) x1[i] = Complex(a[i],0);
for(int i = len1; i < len; i++) x1[i] = Complex(0,0);
for(int i = 0; i < len2; i++) x2[i] = Complex(b[i],0);
for(int i = len2; i < len; i++) x2[i] = Complex(0,0);
fft(x1,len,1);
fft(x2,len,1);
for(int i = 0; i < len; i++) x1[i] = x1[i]*x2[i];
fft(x1,len,-1);
len = len1+len2-1; //这才是有用的len
for(int i = 0; i < len; i++) {
sum[i] = (ll)(x1[i].x+0.5);
}
for(auto x:q) {
sum[2*x]--; //减去取两个编号相同的
}
for(int i = 0; i < len; i++) sum[i]/=2; //(i,j)和(j,i)重复
for(int i = 1; i < len; i++) sum[i] += sum[i-1]; //sum[i]表示取两个木棍,长度之和<=i的取法
sort(q.begin(),q.end());
ll ans = 0;
for(int i = 0; i < n; i++) { //枚举最长边c
ans += sum[len-1]-sum[q[i]]; //选两条边使得 a+b>c
ans -= (ll)(i)*(n-i-1); //减去a,b中一个大于c一个小于c的情况
ans -= (ll)(n-i-1)*(n-i-2)/2; //减去a,b均大于c的情况
ans -= (n-1); //减去a,b中有一个选c的情况
}
double p = ans*6.0/(1.0*n*(n-1)*(n-2)); //除以总选法
printf("%.7f\n",p);
}
return 0;
}