选木棍构成三角形(FFT)

这是一篇关于如何在给定N根长度不超过1e5的木棍中,通过快速傅里叶变换(FFT)方法计算能构成三角形的概率问题的博客。题目指出,直接处理所有可能组合会导致超时,需要考虑优化策略,并且在计算概率时需要注意整数溢出的问题。文章会探讨如何避免这些问题。
摘要由CSDN通过智能技术生成

 题目要求,给N个木棍,从中选3个,问能构成三角形的概率多大。

N<= 1e5.

木棍长度<=1e5.

 

注意事项:

     直接把len开成1e5会TLE。

     统计答案的时候可能会爆int。

     删除非法情况。

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const double PI = acos(-1.0);
struct Complex  {
    double x, y;
    Complex(double _x=0.0,double _y = 0.0) {
        x = _x;
        y = _y;
    }
    Complex operator -(const Complex &b) const {
        return Complex(x-b.x, y-b.y);
    }
    Complex operator +(const Complex &b) const {
        return Complex(x+b.x, y+b.y);
    }
    Complex operator *(const Complex &b) const {
        return Complex(x*b.x-y*b.y, x*b.y+y*b.x);
    }
};
void change(Complex y[], int len) {
    int i,j,k;
    for(i = 1, j = len/2; i < len-1; i++) {
        if(i < j) swap(y[i],y[j]);
        k = len/2;
        while(j 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值