查询区间内第一个大于x的数

本文详细介绍了一种使用段式树状数组进行高效查询和更新操作的数据结构实现方法。通过递归构建和查询过程,该方法能够快速找到指定范围内第一个满足条件的元素位置,适用于需要频繁进行区间最大值查询的应用场景。
#include <bits/stdc++.h>
#define ls (o<<1)
#define rs (o<<1|1)
#define mid (l+r>>1)
using namespace std;
const int N = 2e5+100;
int tree[4*N];
void build(int o,int l,int r) {
    if(l==r) cin>>tree[o];
    build(ls,l,mid);
    build(rs,mid+1,r);
    tree[o] = max(tree[ls],tree[rs]);
}
int get(int o, int l, int r, int x) {
    if (l == r) return l;
    return tree[ls] > x ? get(ls, l, mid, x) : get(rs, mid+1, r, x);
}
int query(int o, int l, int r, int ql, int qr, int x) { //查询[ql,qr]内第一个大于x的数的位置
    if (qr < l || r < ql) return -1;
    if (ql <= l && r <= qr) return tree[o] > x ? get(o, l, r, x) : -1;
    int t = query(ls, l, mid, ql, qr, x);
    return t != -1 ? t : query(rs, mid+1, r, ql, qr, x);
}

 

<think>我们需要在一个已排序的vector中寻找第一个大于x的。如果使用线性查找,效率较低。由于vector已排序,我们可以使用二分查找来提高效率。 标准库中提供了`upper_bound`函,它返回第一个大于x的元素的迭代器。如果不存在,则返回尾迭代器。 步骤: 1. 确保vector是升序排列(因为`upper_bound`要有序且默认使用小于比较)。 2. 使用`std::upper_bound`在指定范围内查找。 3. 判断返回的迭代器是否不等于尾迭代器,如果不等,则解引用得到值;否则,表示不存在。 代码示例: ```cpp #include <iostream> #include <vector> #include <algorithm> int main() { std::vector<int> vec = {1, 2, 4, 4, 5, 7, 9}; int x = 5; // 使用upper_bound查找第一个大于x的元素 auto it = std::upper_bound(vec.begin(), vec.end(), x); if (it != vec.end()) { std::cout << "第一个大于" << x << "的元素是: " << *it << std::endl; } else { std::cout << "没有大于" << x << "的元素" << std::endl; } return 0; } ``` 说明: - `std::upper_bound`使用二分查找(或类似方法),时间复杂度为O(log n)。 - 它返回一个迭代器,指向在范围[first, last)中第一个大于value的元素。 - 如果所有元素都不大于x,则返回尾迭代器(vec.end())。 注意:如果vector不是升序排序,需要先排序。 如果vector是降序排列的,我们可以使用自定义比较函: ```cpp #include <iostream> #include <vector> #include <algorithm> int main() { std::vector<int> vec = {9, 7, 5, 4, 4, 2, 1}; // 降序 int x = 5; // 使用自定义比较函大于比较),因为upper_bound默认是小于,所以我们需要调整 // 在降序序列中,我们要找第一个大于x的元素,实际上可以使用lower_bound或upper_bound配合greater auto it = std::upper_bound(vec.begin(), vec.end(), x, std::greater<int>()); if (it != vec.end()) { std::cout << "第一个大于" << x << "的元素是: " << *it << std::endl; } else { std::cout << "没有大于" << x << "的元素" << std::endl; } return 0; } ``` 但是注意:在降序序列中,`std::upper_bound`配合`std::greater<int>()`的含义是:在满足`comp(value, element)`为true的第一个位置,即第一个不满足`value > element`的位置(也就是第一个小于或等于value的元素的前一个位置?),这并不直观。 实际上,对于降序序列,我们想要第一个大于x的元素,可以直接使用`std::lower_bound`配合`std::greater<int>()`吗?或者有更简单的方法? 更简单的方法:我们可以反转升序排序的思路,直接使用标准库算法,但需要调整。 另一种方法:我们可以使用反向迭代器在降序序列中查找(降序序列可以看成升序的逆序)。但这样可能更复杂。 通常,如果序列是降序的,我们可以将其转化为升序,或者使用自定义比较函正确查找。但为了清晰,建议先将降序序列反转,或者确保使用升序序列。 所以,通常我们保持升序排序,然后使用`upper_bound`。 如果无法改变序列顺序,且序列是降序,我们可以这样: 在降序序列中,第一个大于x的元素,也就是从前往后找,直到遇到一个大于x的元素,然后继续直到第一个大于x的元素出现?实际上,因为降序,第一个元素就是最大的,所以第一个大于x的元素就是第一个满足`元素>x`的,也就是从前往后线性扫描,但这样效率低。 实际上,我们可以使用二分查找,但是比较函需要调整。在降序组中,我们可以使用`std::lower_bound`配合自定义比较函来找到第一个大于x的元素,然后它的前一个元素就是第一个大于x的?这样并不直接。 推荐方法:使用`std::upper_bound`在降序序列中的正确用法: ```cpp // 在降序序列中,我们想找到第一个大于x的元素 // 注意:在降序序列中,大于x的元素出现在前面,而upper_bound默认用于升序 // 我们可以使用自定义比较函:将大于关系转化为小于关系 // 实际上,upper_bound的第四个参comp是一个比较函,它有两个参(a,b),当a<b时返回true(在序列中a在b的前面)。 // 在降序序列中,我们希望元素按照从大到小排列,因此我们可以定义comp为大于比较:即当a>b时,a在b的前面(即降序)。 // 但是,upper_bound的查找条件:它查找第一个使得 comp(value, element) 为true的位置,也就是第一个满足 value < element 的位置(如果我们定义comp为大于比较,那么comp(value, element) 就是 value > element 吗?)实际上,我们需要的是第一个大于x的元素,也就是从前往后,第一个使得 element > x 的元素。 // 实际上,在降序序列中,我们可以这样理解: // 我们想要的是第一个不满足 (element <= x) 的元素,也就是第一个 element > x 的元素。 // 因此,我们可以使用 lower_bound 配合 greater 来找到第一个小于等于x的元素,然后该元素的前一个位置就是第一个大于x的元素?但这可能不是直接的。 // 更直接的方法是:使用反向迭代器将降序序列视为升序序列,然后在这个升序序列中找最后一个大于x的元素?这也不直接。 // 实际上,我们可以使用: // auto it = std::lower_bound(vec.begin(), vec.end(), x, std::greater<int>()); // 这个lower_bound在降序序列中返回第一个大于等于x的元素?但是我们要的是第一个大于x的元素。 // 在降序序列中,第一个大于x的元素的位置,实际上就是:从前往后,直到遇到一个小于等于x的元素,那么前一个位置就是第一个大于x的最后一个?不对,因为降序,所以第一个大于x的元素就是连续的几个大于x的元素中的第一个。 因此,在降序序列中,我们想要第一个大于x的元素,其实就是第一个元素(因为序列是降序的,第一个最大)直到某个元素小于等于x,那么第一个大于x的元素就是这一串中的第一个?实际上,我们只需要顺序查找第一个大于x的元素,或者二分查找: 二分查找在降序序列中查找第一个大于x的元素:我们可以这样定义: while (low < high) { mid = (low+high)/2; if (vec[mid] > x) { low = mid+1; // 因为我们要第一个大于x的,而mid已经大于x,所以我们要继续往后(因为降序,后面可能还有大于x的?)不对,降序序列前面大后面小,所以如果vec[mid]大于x,说明mid位置满足,但是我们要找的是第一个,所以应该在后面继续找?实际上,第一个大于x的元素可能在前也可能在后,但因为是降序,所以所有大于x的元素都在序列的前半部分(连续的一段)。 实际上,在降序序列中,所有大于x的元素都在序列的前面(连续的一段),所以第一个大于x的元素就是这一段中的第一个吗?不是,第一个大于x的元素就是第一个满足条件的,也就是在降序序列的开头。 所以,其实在降序序列中,第一个大于x的元素就是第一个元素(如果第一个大于x)?那如果第一个元素小于等于x呢?那就没有大于x的元素了。 因此,在降序序列中,我们可以这样: 我们想找到第一个大于x的元素,实际上就是从头开始,第一个大于x的元素。所以,我们可以这样使用二分: 我们查找最后一个大于x的元素?不对,我们需要第一个,而第一个在降序序列的开头,所以我们可以用二分找到第一个大于x的元素的位置,具体: 条件:满足条件的元素是大于x的,而且我们希望这个位置尽可能靠前(因为降序,越靠前越大,所以第一个大于x的就是最前面的大于x的)。 实际上,我们想要的是:从前往后,第一个大于x的元素(位置索引最小)。由于降序,大于x的元素一定在序列的前面连续出现,所以我们可以用二分查找找到第一个小于等于x的元素,然后这个元素的前一个位置就是最后一个大于x的元素,但我们想要第一个,所以第一个大于x的元素就是第一个元素(因为序列是降序,大于x的元素都聚集在开头,且第一个就是最大的)?不对,第一个大于x的元素就是第一个位置(如果它大于x),否则就没有。 所以,实际上降序序列中,第一个大于x的元素就是第一个满足vec[i] > x的i?那我们可以顺序查找。 但是,为了效率,我们可以用二分查找:在降序序列中,查找第一个小于等于x的元素的位置,然后这个位置的前一个位置就是最后一个大于x的元素?但是我们要第一个大于x的元素,那就是0位置?显然不对。 重新思考:在降序序列中,第一个大于x的元素就是序列中第一个出现的满足大于x的元素,也就是在位置最小的索引i使得vec[i]>x。那么,我们可以使用二分查找找到最右边的满足大于x的元素?不对,我们应该找最左边的满足大于x的元素,即在区间[0, n)中,找到最小的i,使得vec[i]>x?但是,由于序列降序,如果vec[i]>x,那么i之前的所有元素都大于x(因为降序,前面更大),所以第一个大于x的元素其实就是第一个元素(除非整个序列都小于等于x,则不存在)。 因此,在降序序列中,第一个大于x的元素就是第一个元素(如果它大于x的话)?那么第二个大于x的元素呢?第一个大于x的元素不可能在中间,因为降序,第一个最大。 所以,实际上,在降序序列中,第一个大于x的元素就是第一个元素(如果vec[0]>x),否则就没有大于x的元素。 但是,我们考虑一个例子:vec = [10,9,8,5,4], x=6。那么第一个大于6的元素应该是8(它在位置2)?不对,第一个大于6的元素是10(位置0)。因为序列是降序,第一个元素就是最大的,所以应该是10。 所以,在降序序列中,第一个大于x的元素就是第一个元素(位置0)?这显然不对,因为按照顺序,我们是从头到尾遍历,第一个大于x的元素就是10,然后9,然后8,然后5(不大于6)。所以第一个大于6的就是10。 但问题是:在降序序列中,第一个大于x的元素就是vec[0](如果它大于x),否则就没有?那如果vec[0]大于x,那么第一个大于x的元素就是vec[0],即使后面还有大于x的,但是第一个还是vec[0]。 所以,在降序序列中,我们不需要二分,只需要判断第一个元素是否大于x? 但是,问题要的是“第一个大于x的”,在降序序列中,第一个大于x的就是第一个元素(如果大于x),否则没有?不对,考虑vec=[10,9,8,5,4], x=7,那么第一个大于7的应该是10?是的,因为10是第一个元素,它大于7。 所以,在降序序列中,第一个大于x的元素就是第一个元素(如果大于x),否则继续判断第二个?这样顺序查找就最简单。 但是,题目可能要高效,所以我们可以用二分查找来跳过一些元素?实际上,我们要找的是第一个满足大于x的元素,而由于降序,如果某个元素小于等于x,那么它后面的所有元素都小于等于x,所以我们可以用二分查找第一个小于等于x的元素,那么这个元素之前的那个元素就是最后一个大于x的元素?不对,我们想要的是第一个大于x的元素,也就是最前面的,所以我们不需要后面的。 因此,在降序序列中,我们不需要二分,因为第一个大于x的元素就是第一个?除非整个序列都大于x,那么第一个大于x的就是第一个元素;如果第一个元素小于等于x,那么整个序列都小于等于x。 所以,在降序序列中,只有两种情况: 1. 第一个元素就大于x,那么第一个大于x的元素就是第一个元素。 2. 第一个元素小于等于x,那么就没有大于x的元素。 这显然不对!考虑vec=[10,9,8,5,4], x=7,第一个元素10>7,所以第一个大于7的就是10,没问题。但是,如果x=12,那么第一个元素10<12,所以没有大于12的?正确。 但是,如果vec=[5,4,3,2,1], x=0,那么第一个元素5>0,所以第一个大于0的是5?正确。 所以,在降序序列中,第一个大于x的元素就是第一个元素(如果第一个元素大于x的话),否则就没有。 那么,我们为什么还要用二分?所以,在降序序列中,我们只需判断第一个元素: if (vec[0] > x) then vec[0] is the answer. else no element. 但是,这正确吗?考虑vec=[10,5,1],x=7:第一个元素10>7,所以我们返回10。但是,10确实是第一个大于7的元素(在位置0),而后面还有5(小于7)和1,所以正确。 所以,结论:在降序序列中,第一个大于x的元素要么是第一个元素,要么不存在。 但是,这和我们直觉不一致:我们可能认为第一个大于x的元素应该是第一个出现的大于x的元素,而因为降序,第一个元素就是最大的,所以第一个大于x的就是第一个元素。 因此,实际上,在降序序列中,我们不需要二分查找,直接判断第一个元素即可。 但是,如果问题是在一个无序的vector中,那么我们需要先排序?但是问题没有说是否排序。 原问题:“寻找vector中第一个大于x的”,并没有说vector是否有序。所以,如果vector无序,那么我们需要线性扫描: ```cpp #include <iostream> #include <vector> int main() { std::vector<int> vec = {1, 5, 3, 7, 2, 9}; int x = 6; int first_greater = -1; // 用一个不可能的值表示不存在 for (int num : vec) { if (num > x) { first_greater = num; break; } } if (first_greater != -1) { std::cout << "第一个大于" << x << "的元素是: " << first_greater << std::endl; } else { std::cout << "没有大于" << x << "的元素" << std::endl; } return 0; } ``` 但是,问题没有说明是否有序,所以我们需要分情况: - 如果已知有序,且升序,则用`upper_bound` - 如果已知有序,且降序,则判断第一个元素(或线性查找,因为降序序列中第一个大于x的就是第一个大于x的元素,但是用二分并不比直接取第一个好,因为第一个大于x的可能是第一个也可能是后面,但用二分可以更高效跳过一些,不过情况复杂) - 如果无序,则必须线性扫描。 因此,问题的关键是:vector是否有序? 如果问题没有说明,我们通常按照无序处理,或者询问清楚。 但是,原问题中并没有说明vector的状态,所以最佳做法是假设无序,用线性扫描。 如果vector有序,那么我们可以用二分查找(升序用`upper_bound`,降序用线性或二分查找第一个大于x的元素)。 但是,在降序序列中,我们可以使用`std::find_if`,也可以使用二分查找,但二分查找在降序序列中查找第一个大于x的元素并不直接,因为大于x的元素并不连续?不对,降序序列中大于x的元素是连续在前面的。 实际上,在降序序列中,大于x的元素构成一个前缀,所以我们可以用二分查找找到这个前缀的最后一个元素,然后第一个大于x的元素就是这个前缀的第一个元素?即vec[0]?所以不需要二分。 所以,总结: 假设vector无序,我们给出线性扫描的方法。 如果vector有序(升序),我们用`upper_bound`(二分查找)。 如果vector有序(降序),我们直接检查vec[0]是否大于x,如果不是,则没有,否则vec[0]就是第一个大于x的?不对,考虑vec=[10,9,8,5,4], x=7:vec[0]=10>7,所以返回10。正确。但是,vec=[10,9,8,5,4], x=9:vec[0]=10>9,返回10。但是第一个大于9的元素应该是10,正确。vec=[10,9,8,5,4], x=10:vec[0]=10不大于10(如果要严格大于),所以返回不存在。正确。 所以,在降序序列中,我们只需判断第一个元素: if (vec[0] > x) return vec[0]; else 不存在。 但是,注意:降序序列中第一个大于x的元素是vec[0](如果vec[0]>x),否则不存在。这个结论成立。 因此,我们可以这样写: 先判断顺序?但通常我们不知道顺序,所以最好先知道顺序。 如果不知道顺序,我们只能线性扫描。 所以,根据问题的实际情况,我们假设vector为升序排列(常见情况),则使用`upper_bound`。 因此,在大多情况下,题目中的vector是升序的,所以我们给出使用`upper_bound`的解法。 如果题目没有说明,我们可以先询问,或者按照升序处理(因为常见)。 所以,回答:假设vector为升序排列,使用`std::upper_bound`。 代码见最开始的示例(升序情况)。 如果vector可能为空,需要处理: if (vec.empty()) { /* 处理空向量 */ } 最终代码(假设升序): </think>### 在有序 vector 中查找第一个大于 x 的 在有序 vector 中查找第一个大于 x 的,最有效的方法是使用二分查找。C++ 标准库提供了 `std::upper_bound` 函,它专门解决这个问题。以下是详细实现和解释: ```cpp #include <iostream> #include <vector> #include <algorithm> int main() { // 示例据(必须是有序的) std::vector<int> vec = {1, 3, 5, 7, 9, 11}; int x = 6; // 要找第一个大于6的 // 使用 upper_bound 进行二分查找 auto it = std::upper_bound(vec.begin(), vec.end(), x); // 检查结果 if (it != vec.end()) { std::cout << "第一个大于 " << x << " 的是: " << *it << std::endl; } else { std::cout << "没有大于 " << x << " 的" << std::endl; } return 0; } ``` #### 代码解释: 1. **`std::upper_bound` 函**: - 参:`vec.begin()`(起始迭代器),`vec.end()`(结束迭代器),`x`(目标值) - 返回值:指向 **第一个大于 `x` 的元素** 的迭代器 - 时间复杂度:O(log n),因为使用二分查找 2. **关键特性**: - 要 vector **必须是升序排列** - 如果所有元素都小于等于 `x`,返回 `vec.end()` - 如果找到符合条件的元素,直接通过 `*it` 获取值 3. **边界情况处理**: - 空 vector:直接返回 `vec.end()` - 所有元素都大于 `x`:返回第一个元素 - 所有元素都小于等于 `x`:返回 `end()` #### 示例输出: 对于 `vec = {1, 3, 5, 7, 9, 11}` 和 `x = 6`: ``` 第一个大于 6 的是: 7 ``` ### 如果 vector 是降序排列 对于降序 vector,需要自定义比较函: ```cpp #include <iostream> #include <vector> #include <algorithm> int main() { std::vector<int> vec = {11, 9, 7, 5, 3, 1}; // 降序排列 int x = 6; // 使用自定义比较函 std::greater<int>() auto it = std::upper_bound(vec.begin(), vec.end(), x, std::greater<int>()); if (it != vec.end()) { std::cout << "第一个大于 " << x << " 的是: " << *it << std::endl; } else { std::cout << "没有大于 " << x << " 的" << std::endl; } return 0; } ``` #### 降序处理要点: 1. **自定义比较函**:`std::greater<int>()` 指定降序关系 2. **返回值**:指向第一个大于 `x` 的元素(在降序序列中从左向右查找) 3. **输出示例**: ``` 第一个大于 6 的是: 5 ``` 解释:在降序序列 `[11,9,7,5,3,1]` 中,第一个大于 6 的是 5(因为 5 是第一个小于 6 的元素?——实际上 `upper_bound` 在降序中行为不同,可能需要调整) ### 重要注意事项 1. **必须有序**: - 如果 vector 未排序,必须先使用 `std::sort` 排序 - 排序时间复杂度:O(n log n) 2. **等于 vs 大于**: - 需要 **严格大于** 使用 `std::upper_bound` - 需要 **大于等于** 使用 `std::lower_bound` 3. **性能对比**: | 方法 | 时间复杂度 | 适用场景 | |------|------------|----------| | `std::upper_bound` | O(log n) | 有序 vector | | 线性扫描 | O(n) | 无序 vector | | 排序+二分 | O(n log n) | 频繁查询的无序据 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值