传送门
设
d
p
[
i
]
[
j
]
(
j
≥
i
)
dp[i][j](j\ge i)
dp[i][j](j≥i)表示到达
i
i
i点只有一条路径且满足能够到达
i
i
i点的这个唯一的点
k
k
k能到达的最远点最多是
j
j
j。
于是不难写出方程 d p [ i ] [ j + a [ j ] ] = m i n { d p [ i ] [ j + a [ j ] ] , d p [ j ] [ i − 1 ] + c n t [ j ] [ i − 1 ] } dp[i][j+a[j]]=min\{dp[i][j+a[j]],dp[j][i-1]+cnt[j][i-1]\} dp[i][j+a[j]]=min{dp[i][j+a[j]],dp[j][i−1]+cnt[j][i−1]},其中 j + a [ j ] ≥ i j+a[j]\ge i j+a[j]≥i, c n t [ l ] [ r ] cnt[l][r] cnt[l][r]代表从 l l l到 r r r的点能够到达 i i i的数量,这些点也是必须要被清理的,并且这些点的数量很容易被维护。
int a[maxn],dp[maxn][maxn];
int main(){
int t=rd();
while(t--){
int n=rd();
FOR(i,1,n+1)a[i]=rd();
FOR(i,2,n+1)dp[1][i]=0;
FOR(i,2,n+1){
int cnt=0;
FOR(j,i,n+1)dp[i][j]=inf/2;
ROF(j,i-1,1){
if(j+a[j]>=i){
dp[i][j+a[j]]=min(dp[i][j+a[j]],dp[j][i-1]+cnt);
cnt++;
}
}
FOR(j,i+1,n+1)dp[i][j]=min(dp[i][j],dp[i][j-1]);
}
wrn(dp[n][n]);
}
}