acm-(dp)Codeforces Round #688 (Div. 2) F. Even Harder

题面
传送门
d p [ i ] [ j ] ( j ≥ i ) dp[i][j](j\ge i) dp[i][j](ji)表示到达 i i i点只有一条路径且满足能够到达 i i i点的这个唯一的点 k k k能到达的最远点最多 j j j

于是不难写出方程 d p [ i ] [ j + a [ j ] ] = m i n { d p [ i ] [ j + a [ j ] ] , d p [ j ] [ i − 1 ] + c n t [ j ] [ i − 1 ] } dp[i][j+a[j]]=min\{dp[i][j+a[j]],dp[j][i-1]+cnt[j][i-1]\} dp[i][j+a[j]]=min{dp[i][j+a[j]],dp[j][i1]+cnt[j][i1]},其中 j + a [ j ] ≥ i j+a[j]\ge i j+a[j]i c n t [ l ] [ r ] cnt[l][r] cnt[l][r]代表从 l l l r r r的点能够到达 i i i的数量,这些点也是必须要被清理的,并且这些点的数量很容易被维护。

int a[maxn],dp[maxn][maxn];

int main(){
	int t=rd();
	while(t--){
		int n=rd();
		FOR(i,1,n+1)a[i]=rd();
		FOR(i,2,n+1)dp[1][i]=0;
		FOR(i,2,n+1){
			int cnt=0;
			FOR(j,i,n+1)dp[i][j]=inf/2;
			ROF(j,i-1,1){
				if(j+a[j]>=i){
					dp[i][j+a[j]]=min(dp[i][j+a[j]],dp[j][i-1]+cnt);
					cnt++;
				}
			}
			FOR(j,i+1,n+1)dp[i][j]=min(dp[i][j],dp[i][j-1]);
		}
		wrn(dp[n][n]);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值