pytorch 确保实验结果的复现性

 根据官方文档整理的代码块

def setup_seed(seed):
    # Make sure the algorithm results are reproducible
    torch.manual_seed(seed)  # set CPU seed
    torch.cuda.manual_seed(seed)   # set GPU seed
    torch.cuda.manual_seed_all(seed)  # if you are using multi-GPU
    np.random.seed(seed)  # Numpy module
    random.seed(seed)  # Python random module
    # causes cuDNN to deterministically select an algorithm, possibly at the cost of reduced performance
    torch.backends.cudnn.benchmark = False
    # avoid algorithm itself may be nondeterministic
    torch.backends.cudnn.deterministic = True

if __name__ == '__main__':
    setup_seed(1)
    # todo

参考: pytoch官网文档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值