拿到这个题目,如果直接暴力的话,的确是很简单的,直接来一次遍历就可以了,但这样的话,题目中给的行和列都是递增这个条件就浪费掉了,如果是一维数组,直接使用二分法应该就可以了。
考虑到二分法的话,感觉对行和列来进行二分都不太好,根据题目,我可以得到一个结论,那就是右下角的元素是最大的。所以我在想,可不可以经过二分法,将我需要判断的元素精确定位到某行或列,然后对这一行和列进行查找,效率会高一些。这样写应该是可以做,但是好像还是很麻烦。进行了3次二分查找才找出来,对角线来一次,找到所在的行和列分别也要来一次,感觉好复杂。我写完了代码,才发现题目看错了,这样是不行的。
// 错误代码
class Solution {
public boolean findNumberIn2DArray(int[][] matrix, int target) {
if(matrix.length==0 || matrix[0].length == 0) return false;
return BinarySearchResult(matrix,target);
}
public int BinarySearch(int[][] matrix, int target){
int m = matrix.length;
int left = 0,right = m-1;
while(left<=right){
int mid = left+(right-left)/2;
if(matrix[mid][mid]>target){
right = mid-1;
}else if(matrix[mid][mid]<target){
left = mid+1;
}else{
// 对角线上就有这元素,直接返回
return -1;
}
}
return left;
}
public boolean BinarySearchResult(int[][] matrix, int target){
int n = BinarySearch(matrix,target);
if(n==-1){
return true;
}
int left = 0,right = n;
while(left<=right){
int mid = left+(right-left)/2;
if(matrix[n][mid]>target){
right = mid-1;
}else if(matrix[n][mid]<target){
left = mid+1;
}else{
// 对角线上就有这元素,直接返回
return true;
}
}
left = 0;
right = n;
while(left<=right){
int mid = left+(right-left)/2;
if(matrix[mid][n]>target){
right = mid-1;
}else if(matrix[mid][n]<target){
left = mid+1;
}else{
// 对角线上就有这元素,直接返回
return true;
}
}
return false;
}
}
之所以保留上面的代码,就是为了给自己提醒。
- 首先,题意看错了,二维数组是n*m而不是n*n,所以,从一开始我的思路就错了,
- 其次,忘记判断特殊情况,数组为空怎么办
- 最后,对于数组最常见的数组越界错误没有敏感。
其实,对于二分应该还可以精简,但我硬生生是写了三遍,只是为了好理解,这些 ,都是需要改进的地方。
看了一下官方思路,是从右上角,如果目标比右上角大,就下移,如果目标比右上角小,就左移。
class Solution {
public boolean findNumberIn2DArray(int[][] matrix, int target) {
// 需要先进行判断
if(matrix == null || matrix.length == 0 || matrix[0].length == 0) return false;
int rows = matrix.length;
int cols = matrix[0].length;
int i = 0;
int j = cols-1;
while(i < rows && j >= 0){
int num = matrix[i][j];
if(num == target) return true;
else if(num>target) j--;
else i++;
}
return false;
}
}