这里介绍两种方法:
一、
分m个桶,cnt[i]储存a[x]%m的数量,再用v[i]储存a[x]的原值。
当n个数字都按照这样读入完毕之后,for循环遍历一遍cnt数组
一旦∀ i∈[0,m] 使得 cnt[i]>1,则说明有至少两个数字ax,y%m=i,
ax%m=i,ay%m=i;根据取模运算的规律,可得|ax-ay|%m=0,这样只需要扫过一次cnt数组,如果有cnt[i]>1就直接输出0即可。
这样判断以后,通过两层m的循环枚举i和j,|ax-ay|%m=|ax%m-ay%m+m|%m
ax%m和ay%m对应的就是cnt[i]和cnt[j]的i和j。
所以在调用i和j的时候要看v[i]和v[j]的大小。
复杂度O(m^2):
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int cnt[1010]={0};//桶子
int v[1010];//存原值
int main(){
int n,m,hc;
cin>>n>>m;
for(int i=0;i<n;i++){
scanf("%d",&hc);
cnt[hc%m]++;//插旗
v[hc%m]=hc;
}
for(int i=0;i<m;i++){
if(cnt[i]>1){
cout<<0<<endl;//如果一个桶里有两个旗子,则结果为0
return 0;
}
}
int res=1;
for(int i=0;i<m;i++){
for(int j=i+1;j<m;j++){
if(!cnt[i]||!cnt[j]) continue;//如果桶子里面没有插旗,则跳过
if(v[i]>v[j]){//比较原值的大小
res=res*(i-j+m)%m;
}
else{
res=res*(j-i+m)%m;
}
}
}
cout<<res<<endl;
}
二、
暴力枚举,但是普通的暴力枚举会有O(N^2),铁定TLE。
当n>m时,一定存在两个数ai,aj使得ai%m=aj%m。
所以如果n<m,则暴力,n>m时则直接出0即可。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int a[200010];
long long res=1;
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
}
if(n>m) cout<<0<<endl;//如果n>m则直接出0
else{
for(int i=0;i<n;i++){//暴力
for(int j=i+1;j<n;j++){
res=res*(abs(a[i]-a[j])%m)%m;
if(res==0){
break;
}
}
}
cout<<res<<endl;
}
}