Flutter & GLSL#9 | 函数曲线


theme: cyanosis

张风捷特烈 Flutter & GLSL 系列文章:

案例代码开源地址 【skeleton】

shader8.png


1. 复习 smoothstep 函数

第六篇 中,我们已经认识了 smoothstep 函数,它可以让一指定的区间内平滑过渡。下面先通过一个小例子回顾一下:

左图 smoothstep(0.4, 0.4 + 0.1, coo.y)

表示: 纵坐标小于 0.4 时,返回 0 展示黑色;纵坐标大于 0.5 时,返回 1 展示白色。在 [0.4,0.5] 之间平滑过渡。

| y= 0.4 | y= 0.8 | | --- | --- | | image.png | image.png |

我们将 0.4 记为一个变量值 y, 那么 smoothstep(y, y + 0.1, coo.y) 就可以表示:

y 在 [0,y) 返回 0 展示黑色。
y 在 [y,y+0.1] 之间从 0~1 平滑过渡。
y 在 (y+0.1,1] 返回 1 展示白色.

上面右图中 y=0.8 时,就可以将黑色区域下移: ```c

version 460 core

include

precision mediump float;

out vec4 fragColor; uniform vec2 uSize;

void main() { vec2 coo = FlutterFragCoord() / uSize; float y = 0.4; //float y = 0.8; float ret = smoothstep(y, y + 0.1, coo.y); fragColor = vec4(vec3(ret), 1.0); } ```


同理我们可以分析出 smoothstep(y-0.1, y, coo.y) 就可以表示:

y 在 [0,y-0.1) 返回 0 展示黑色。
y 在 [y-0.1,y] 之间从 0~1 平滑过渡。
y 在 (y,1] 返回 1 展示白色.

| smoothstep(y, y + 0.1, coo.y) | smoothstep(y - 0.1, y, coo.y) | | --- | --- | | image.png | image.png |

仔细观察这两个图,想一想,如果让右侧减去左侧会发生什么呢?

提示:黑色是 0,白色时 1 ,渐变是 0~1 之间.


2. 生成线条

白色区域相减 1-1 =0 ,会呈现黑色,黑色区域 0 - 0 也是黑色。左侧白色区域减去过渡区域,相当于 1-过渡值,也就是反向过渡。左侧过渡区域对应的右侧是黑色,也就是减 0 ,保持不变。于是乎可以得到如下的光线。当控制 y 的数值,可以控制光线在的纵向位置:

| y=0.4 | y=0.8 | | --- | --- | | image.png | image.png |

```dart

version 460 core

include

precision mediump float;

out vec4 fragColor; uniform vec2 uSize;

void main() { vec2 coo = FlutterFragCoord() / uSize; float y = 0.8; float ret0 = smoothstep(y, y + 0.1, coo.y); float ret1 = smoothstep(y - 0.1, y, coo.y); float ret = ret1-ret0; fragColor = vec4(vec3(ret), 1.0); } ```


如果我们把过渡区域改小,就可以看到更明显的线条。顺便可以把光线的生成逻辑封装成一个函数,效果如下:

| y=0.4 | y=0.8 | | --- | --- | | image.png | image.png |

```c

version 460 core

include

precision mediump float;

out vec4 fragColor; uniform vec2 uSize;

float plot(vec2 coo, float y, float e) { float ret0 = smoothstep(y, y + e, coo.y); float ret1 = smoothstep(y - e, y, coo.y); return ret1 - ret0; }

void main() { vec2 coo = FlutterFragCoord() / uSize; float y = 0.4; float ret = plot(coo,y,0.005); fragColor = vec4(vec3(ret), 1.0); } ```


3. 函数曲线

上面只是画了一条线,那这和函数曲线有什么关系呢?其实仔细信息,上面的曲线不就是 y =0.4 这个特殊函数的曲线表现吗?如果我们通过 coo.x 控制 y 的数值,会发生什么化学反应呢? 比如我们最熟悉的 y = x:

image.png

```c

version 460 core

include

precision mediump float;

out vec4 fragColor; uniform vec2 uSize;

float plot(vec2 coo, float y, float e) { float ret0 = smoothstep(y, y + e, coo.y); float ret1 = smoothstep(y - e, y, coo.y); return ret1 - ret0; }

void main() { vec2 coo = FlutterFragCoord() / uSize; float x = coo.x; float y = x; float ret = plot(coo,y,0.005); fragColor = vec4(vec3(ret), 1.0); } ```

这样我们就可以设置任意的函数,通过自变量 x 的变化,影响 y 值:

|y=x^2 | y = 0.2*sin(16*x)+0.5 | | --- | --- | | image.png | image.png |


小彩蛋 : 仔细想一想,其实 smoothstep 本身就是一个函数,他将输入值转为输出。通过如下的函数,我们就可以非常直观地看出 smoothstep 的过渡效果:

float y = smoothstep(0, 1, coo.x);

image.png


本篇主要通过两个 smoothstep 相减生成线条,通过函数关系,来构造对应的函数曲线线条。还是非常有意思的,理解本篇内容,你将会对 smoothstep 函数有一个更深的认识。那么本篇就到这里,谢谢观看,我们下次再见 ~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值