自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

理论都是虚的,代码才是王道。

直接上代码,哈哈。

  • 博客(1041)
  • 资源 (7)
  • 收藏
  • 关注

原创 手把手教你玩转TensorFlow稀疏张量:真实场景下的高效数据处理技巧

想象你有一个超大号的围棋棋盘(比如1000x1000),上面只落了十几个棋子。哪些位置有棋子(坐标)这些棋子是什么颜色(具体值)棋盘实际有多大(总尺寸)indices = [[0,1], [1,2], [2,3]] # 非零元素的坐标values = [1, 2, 3] # 具体的数值dense_shape = [3,4] # 原始张量的形状经过本文的系统学习,我们已经掌握了稀疏张量的核心操作和实战技巧。推荐系统:优先使用稀疏嵌入层自然语言处理:结合RaggedTensor使用。

2025-04-17 17:50:12 855

原创 # TensorFlow模型优化实战:手把手教你用Model Optimization Toolkit压缩模型,效果立竿见影!

版本兼容性问题:TF 2.10+建议搭配TFMOT 0.7.x,新版本可能接口有变化剪枝后准确率暴跌:尝试降低最终稀疏率,从0.5开始逐步增加量化后模型变慢:检查是否启用了硬件加速,部分设备需要INT8支持部署时shape不匹配:导出前用固定输入维度聚类效果不明显:尝试不同的初始化方法(kmeans、density-based等)

2025-04-17 17:49:22 391

原创 TensorFlow模型量化实战:三步压缩AI模型体积,实测ResNet缩小4倍

如同将RAW格式照片转换为JPEG,模型量化通过将32位浮点数转换为8位整数(FP32→INT8),实现四倍存储压缩。这种有损压缩的精妙之处在于:通过校准数据集统计出各层的动态范围,使用缩放因子(scale)和零点(zero point)保留关键特征。原始计算:0.8732×1.2945+0.5623=1.692量化计算:114×42 + 74 = 4852 → 反量化:4852×0.0078≈1.685。

2025-04-17 17:45:33 865

原创 手把手教你用TensorFlow Recommenders搭建电影推荐系统

用户塔])# 电影塔])# 设置任务(这里用召回任务)

2025-04-17 16:37:15 307

原创 【实战指南】TensorFlow Agents强化学习从入门到精通:手把手教你训练智能体玩转平衡杆游戏

作为TensorFlow框架生态中的重要成员,TensorFlow Agents为开发者提供了一个高效构建强化学习模型的工具箱。今天我们就以经典的CartPole平衡杆游戏为例,手把手带您体验用这个框架开发智能体的完整流程。就算您是刚接触强化学习的新手,跟着本文的步骤也能快速上手。

2025-04-17 16:36:37 304

原创 深度学习+3D图形处理实战:用TensorFlow Graphics实现智能模型可视化系统

在智能安防监控里识别可疑包裹的立体形状、在电商平台展示可旋转查看的商品模型、在自动驾驶中感知周围车辆的体积信息…这些真实场景都离不开3D数据处理。传统方法需要复杂的数学计算,而TensorFlow Graphics让开发者能用深度学习的方式解决这些问题。

2025-04-15 11:59:04 378

原创 TensorFlow模型子类化开发终极指南:零基础实现灵活AI结构(附代码和实例)

自定义损失计算添加正则化项实现对抗训练等高级技巧# 动态创建隐藏层代码规范将层定义放在__init__中保持call方法干净整洁使用training参数区分模式调试技巧使用model.summary()查看结构用tf.print调试中间值检查梯度是否正常更新部署建议导出时指定signature使用TFLite转换工具进行量化压缩模型子类化就像给你的神经网络开发装上了涡轮增压,虽然需要多写点代码,但获得的灵活性和控制力是其他API无法比拟的。

2025-04-15 11:57:50 452

原创 突破内置限制!TensorFlow自定义评估指标开发实战(含多场景案例)

自定义支持样本加权的F1指标处理类别不平衡的评估方法生产级的指标实现技巧将常用指标封装为独立模块编写单元测试验证指标计算使用TensorBoard进行指标监控。

2025-04-15 11:57:07 406

原创 深度学习模型评估指南:TensorFlow中准确率、召回率的正确使用方式

指标是用来量化模型性能的数值度量。在TensorFlow中,指标不仅仅是简单的计算函数,它们是具有状态的Keras层,能够在训练过程中累积统计数据,并在需要时返回结果。与损失函数不同,指标通常更直观易懂,能够直接反映模型在业务场景中的表现。例如,准确率告诉我们模型预测正确的比例,召回率则反映模型找出所有正例的能力。业务特定需求(如加权准确率)特殊阈值处理多任务学习的复合指标领域特定的评估标准# 定义指标# 更新指标return {# 更新测试指标return {

2025-04-15 11:56:11 787

原创 深度学习必杀技!TensorFlow梯度裁剪从原理到调参全解析

构建一个简单的3层全连接网络。

2025-04-15 11:54:06 496

原创 TensorFlow调优实战:Keras Tuner超参数搜索完整指南(附MNIST手写体识别案例)

核心是创建一个包含HyperParameters对象的模型构建器。# 调节全连接层神经元数量# 动态添加网络层数。

2025-04-15 11:53:15 1021

原创 从零到精通:TensorFlow迁移学习实战全解析

通过这篇文章,我们完整走通了迁移学习的全流程。从数据准备到模型微调,再到最后的部署上线,每个环节都有对应的实现方案。记住,好的模型不是一次训练出来的,而是通过不断调整和优化迭代出来的。建议大家多动手实践,把文中的代码跑起来,再根据自己的业务需求进行调整。

2025-04-15 11:52:10 880

原创 TensorFlow Hub预训练模型实战指南:零基础实现高精度AI模型开发(附猫狗识别代码)

想象一下你要训练一个识别猫咪的AI模型。如果从零开始,你需要收集数万张图片、调参、训练几天甚至几周。但如果你知道有个现成的"猫咪识别专家"模型,只需要教它认识你家主子的特殊花纹——这就是预训练模型的价值。TensorFlow Hub就是这样一个AI模型"超市",里面存放着谷歌和社区贡献的数百个现成模型,涵盖图像、文本、视频等场景。把预训练模型比作"学霸笔记":学霸(预训练模型)已经学完了基础数学(海量数据集训练),我们只需要让他复习下考试重点(自定义数据集微调),就能快速拿高分(解决具体问题)。

2025-04-15 11:51:22 404

原创 TensorFlow.js浏览器AI实战:零基础实现图片分类与姿态检测

现在连手机都能跑AI了,浏览器凭啥不行?TensorFlow.js这玩意儿直接把深度学习搬到了前端,省了服务器开销不说,用户隐私也更有保障。比如我最近做的在线试妆功能,用户照片压根不用上传服务器,直接在浏览器里处理,合规又高效。

2025-04-15 11:49:01 631

原创 手把手教你将TensorFlow模型部署到生产环境:TensorFlow Serving全流程实战

目录名必须是数字,如"1"、“2”,不能用"v1"等字符!部署模型不是终点,而是新的起点。设置自动化监控(Prometheus+Grafana)建立版本回滚机制定期进行压力测试记住,线上服务的稳定性比模型精度更重要!遇到问题欢迎在评论区交流,看到必回。

2025-04-15 11:48:02 293

原创 从零掌握TensorFlow TPU训练:8倍提速技巧大公开

TPU不是万能药,但在处理大batch_size、矩阵运算密集型的任务时(如Transformer、推荐系统),它的优势就像高铁碾压绿皮车。建议大家根据业务场景灵活选择,记住:适合的才是最好的!

2025-04-15 11:47:16 329

原创 TensorFlow分布式训练全攻略:从单机多卡到多机协同实战指南|MirroredStrategy与MultiWorkerMirroredStrategy深度解析

)

2025-04-15 11:46:39 786

原创 TensorFlow验证集实战全攻略:从数据划分到智能监控的5大核心技巧

做过机器学习的朋友都知道,训练时最怕遇到的情况就是"一学就会,一考就废"。这就好比学生平时作业全对,一到考试就露馅。验证集就是我们的"模拟考试",它和"期末考试"(测试集)最大的区别在于:验证集是老师(模型)在平时学习阶段就能看到的题型,而测试集是老师(模型)从来没见过的全新题目。在实际工程中,我见过太多因为验证集使用不当导致的翻车现场。比如有个做电商推荐的项目,团队把用户行为数据按时间顺序随机切分,结果新用户的行为全在验证集里,导致线上效果比验证集差30%以上。这就是典型的验证集划分方法错误导致的灾难。

2025-04-15 11:45:39 291

原创 TensorFlow模型编译与训练终极指南:从参数解析到实战调优,避坑大全。

模型编译和训练的每个参数选择都会显著影响最终效果。理解每个参数的理论含义通过实验记录不同配置的效果善用回调函数实现自动化训练建立自己的参数配置模板库。

2025-04-15 11:44:50 440

原创 手把手教你调TensorFlow优化器参数:SGD、Adam、RMSprop原理与实战全解

SGD:基础但有效,配合动量能提升效果,适合需要精细调参的场景Adam:默认首选,自适应学习率效果好,但可能错过全局最优RMSprop:RNN任务效果突出,对稀疏数据友好参数调优黄金法则先用Adam快速出baseline追求极致精度时换SGD+动量序列数据优先尝试RMSprop学习率从默认值开始,观察loss曲线调整希望这篇实战指南,能帮你彻底搞懂TensorFlow优化器的使用技巧。

2025-04-15 11:42:07 775

原创 深入浅出TensorFlow激活函数实战:ReLU/Sigmoid/Softmax选择指南与完整代码实现

作为神经网络的核心组件,激活函数直接决定了模型的非线性表达能力。在TensorFlow开发中,选择不当的激活函数可能导致梯度消失、训练速度缓慢等问题。举个生活化的例子:激活函数就像给咖啡加糖的过程,没有糖(激活函数)的咖啡(线性模型)虽然能解渴,但缺乏丰富的层次感。

2025-04-15 11:41:04 926

原创 TensorFlow五大核心层全解析:从Dense到LSTM的实战指南|深度学习必看

今天我要带大家深入TensorFlow的核心层操作。咱们不整虚的,直接上干货,用最直白的语言和最实在的代码,让你一次性搞懂Dense、Conv2D、LSTM、Embedding、Dropout这五大金刚的使用姿势。准备好了吗?系好安全带,咱们发车!

2025-04-15 11:40:31 544

原创 TensorFlow手把手教学:Keras层接口详解与自定义层开发实战指南

get_config方法from_config类方法注册自定义对象。

2025-04-15 11:39:13 383

原创 手把手教你用Keras Sequential模型搭建神经网络:从零基础到图像分类实战

作为一名在人工智能领域摸爬滚打多年的开发者,我经常被问到一个问题:“老哥,我想快速上手深度学习,应该从哪开始?” 答案很简单——Keras的Sequential模型就是你的最佳起点。这个就像搭积木一样的API设计,让构建神经网络变得和拼乐高一样直观。今天我就带大家用最接地气的方式,从安装环境到完成一个完整的图像分类项目,手把手走一遍全流程。

2025-04-15 11:37:52 785

原创 TensorFlow自定义数据生成器从零精讲:手把手教你处理超大规模数据集

通过这个完整的实例,我们实现了一个可以处理10万级医疗影像数据的生成器。使用Sequence基类保证线程安全提前建立文件索引避免频繁IO在数据加载时进行实时增强合理利用多进程加速记住,好的数据生成器能让你的训练效率提升10倍不止!希望这个实例能成为你处理复杂数据任务的瑞士军刀。

2025-04-15 11:37:00 630

原创 TensorFlow自动微分终极指南:深入解析tf.GradientTape原理与六大实战场景应用

在深度学习领域,自动微分(Automatic Differentiation)是神经网络训练的核心技术。与传统符号微分和数值微分相比,自动微分结合了二者的优点:TensorFlow 2.x引入的即时执行模式(Eager Execution)与tf.GradientTape的协同工作,使得梯度计算过程既灵活又高效。该设计尤其适合需要自定义训练流程、实现复杂模型结构或进行前沿算法研究的开发者。该上下文管理器的工作流程:参数详解:步骤2 构建计算上下文步骤3 执行梯度计算3.2 多变量偏导数四、

2025-04-05 17:22:36 37

原创 TensorFlow性能飞跃指南:深度解析tf.function计算图转换技术与实战应用

return y。

2025-04-05 17:21:46 65

原创 TensorFlow执行模式深度解析:Eager Execution与计算图模式的切换策略与实战指南

在TensorFlow的发展历程中,执行模式的演进始终是框架优化的核心方向。从静态计算图到动态执行的Eager模式,再到二者的融合使用,TensorFlow为开发者提供了更灵活的编程范式。本文将深入探讨两种执行模式的核心差异,并通过完整实例演示模式切换的最佳实践。

2025-04-05 17:20:55 44

原创 TensorFlow性能飞跃指南:深度解析tf.function计算图转换技术与实战应用

return y。

2025-04-05 17:20:15 36

原创 TensorFlow张量形状变换终极指南:Reshape/Squeeze/Expand_dims原理详解与工业级实战

实现不同硬件设备(CPU/GPU/TPU)的维度优化构建适应多模态输入的灵活模型架构提升数据处理管道的吞吐量达40%以上结合tf.transpose实现轴交换掌握动态形状的tf.ensure_shape验证研究XLA编译器中的形状优化策略。

2025-04-05 17:19:29 80

原创 TensorFlow张量形状变换终极指南:Reshape/Squeeze/Expand_dims原理详解与工业级实战(附完整代码)

实现不同硬件设备(CPU/GPU/TPU)的维度优化构建适应多模态输入的灵活模型架构提升数据处理管道的吞吐量达40%以上结合tf.transpose实现轴交换掌握动态形状的tf.ensure_shape验证研究XLA编译器中的形状优化策略。

2025-04-05 17:18:43 76

原创 TensorFlow张量运算完全指南:8大核心操作详解与实战代码解析 | 深度学习必备数学基础

张量(Tensor)是TensorFlow的核心数据结构,可理解为多维数组的泛化形式:Tensor属性验证示例:2. 张量加法运算数学原理元素级加法要求操作数形状相同或满足广播规则:Ci,j=Ai,j+Bi,j C_{i,j} = A_{i,j} + B_{i,j} Ci,j​=Ai,j​+Bi,j​## 2.2 广播加法3. 张量减法运算数学定义Ci,j=Ai,j−Bi,j C_{i,j} = A_{i,j} - B_{i,j} Ci,j​=Ai,j​−Bi,j​## 3.2 标量

2025-04-05 17:18:00 36

原创 TensorFlow终极指南:深度解析张量类型转换与GPU/CPU设备分配策略 | 附完整实战代码与性能调优技巧

在TensorFlow中,张量(Tensor)是多维数组的抽象表示,是构建计算图的核心数据结构。

2025-04-05 17:16:35 34

原创 TensorFlow工业级数据加载实战:从Sequence原理到百万级数据高效处理架构设计

始终实现完整的数据验证方法对内存使用设置硬性限制实现可视化调试接口添加数据完整性检查记录数据加载性能指标。

2025-03-27 21:10:06 51

原创 从零开始:使用TF-IDF加权与n-gram特征进行高效文本分类的完整指南

在自然语言处理(NLP)领域,文本分类是一个基础且重要的任务。为了将文本数据转化为机器学习模型可以理解的数值形式,特征提取是关键步骤之一。TF-IDF(Term Frequency-Inverse Document Frequency)加权与n-gram特征是两种常用的文本特征提取方法。本文将详细介绍如何使用TensorFlow结合TF-IDF加权与n-gram特征进行文本分类,并通过一个完整的实例来展示其实现过程。

2025-03-17 23:10:23 77

原创 TensorFlow工业级数据加载实战:从Sequence原理到百万级数据高效处理架构设计

始终实现完整的数据验证方法对内存使用设置硬性限制实现可视化调试接口添加数据完整性检查记录数据加载性能指标。

2025-03-17 23:06:59 45

原创 TensorFlow异步数据加载性能飞跃:从原理到工业级优化的完整指南

通过本文的深度解析,我们不仅掌握了TensorFlow异步加载的核心原理,更获得了可直接应用于工业场景的优化方案。基准性能测量 → 2. 分阶段实施优化 → 3. 动态参数调优 → 4. 持续监控改进。

2025-03-17 23:06:01 61

原创 本地部署新标杆!谷歌Gemma 3硬核实测:27B参数完胜DeepSeek V3,中文理解惊艳

在AI模型愈发庞大的今天,谷歌最新推出的Gemma 3系列开源模型犹如一股清流。作为深耕AI领域的开发者,本人第一时间对这款号称"单GPU可运行的最强模型"进行了深度实测,本文将带您全面解析这个轻量化模型的革命性突破。Gemma 3在仅DeepSeek 1/8参数量下实现全面性能超越,重新定义了轻量化模型的行业标准。“该流程图展示了机器学习项目的标准工作流,包含数据采集→清洗→特征工程→模型训练→评估→部署六个阶段,其中反馈循环存在于模型评估与特征工程之间…1️⃣ 跨模态理解:支持图像分析与文本生成联动。

2025-03-13 21:38:05 4724

原创 深度解析:基于DeepSeek的跨境支付汇率波动对冲模型实战指南——从原理到部署的完整实现

随着全球化进程的加速,跨境支付的需求日益增长。然而,汇率波动带来的风险成为了跨境支付中的一大挑战。传统的汇率对冲方法主要依赖于金融衍生品,如远期合约、期权等,但这些方法往往需要复杂的金融知识和较高的操作成本。近年来,随着人工智能技术的发展,尤其是深度学习在金融领域的应用,基于机器学习的汇率波动对冲模型逐渐成为研究热点。

2025-03-09 23:06:50 579

原创 *深度解析:基于DeepSeek的DeFi协议智能合约漏洞检测实战指南——从原理到部署的完整实现

随着区块链技术的快速发展,去中心化金融(DeFi)协议已成为金融科技领域的重要创新。DeFi协议通过智能合约实现自动化金融服务,然而,智能合约的安全性一直是开发者关注的焦点。近年来,智能合约漏洞导致的资金损失事件频发,如The DAO事件、Parity钱包漏洞等,凸显了智能合约漏洞检测的重要性。当前,智能合约漏洞检测技术主要分为静态分析、动态分析和形式化验证三类。静态分析通过代码扫描检测潜在漏洞,动态分析通过执行合约代码发现漏洞,形式化验证则通过数学证明确保合约的正确性。

2025-03-09 23:02:51 435

效率神器3DMDriverMaster:一键解决驱动烦恼!电脑小白也能秒变硬件达人

【效率神器】3DMDriverMaster:一键解决驱动烦恼!电脑小白也能秒变硬件达人 还在为蓝屏、设备无法识别、游戏卡顿抓狂?驱动问题堪称Windows用户永恒的痛点!今天推荐一款国产神器——**3DMDriverMaster**,3DM工作室十年技术沉淀,专治各种驱动不服!

2025-04-10

DeepSeek大模型安装助手简介

DeepSeek大模型安装助手简介 概述 DeepSeek大模型安装助手是一款专为开发者和研究人员设计的智能化工具,旨在简化大型语言模型(如DeepSeek系列模型)的安装、配置与部署流程。无论是个人开发者、学术团队还是企业用户,均可通过该助手快速搭建高性能的AI模型环境,降低技术门槛,提升工作效率。 核心功能 一键式安装 自动检测系统环境(如操作系统、Python版本、CUDA驱动等),智能匹配最佳安装方案,避免手动配置的繁琐与潜在错误。 依赖库管理 集成模型运行所需的全部依赖(如PyTorch、Transformers等),自动安装并解决版本冲突问题,确保环境兼容性。 模型快速部署 支持从官方仓库或自定义路径下载预训练模型,提供清晰的配置向导,轻松完成模型加载与初始化。 性能优化 根据硬件资源(GPU/CPU)自动推荐优化参数(如并行计算、显存分配),最大限度提升推理与训练效率。 验证与调试 内置安装验证工具,提供测试脚本及示例代码,帮助用户快速确认模型可用性,并支持常见报错诊断与修复建议。

2025-02-27

考勤管理系统源码(含部署教程)适合毕业设计,有视频讲解、文档、和全部源码

考勤是每个单位对员工的基本要求,它可以很好的反映出员工是否准时上下班。但是,一般单位还是会采用纸质考勤表,大大的浪费了时间,而且还存在作假的嫌疑。所以一个好的单位考勤管理系统的设计与实现是顺应历史潮流发展的产物。 本文分析了国内外单位信息化的现状,阐述了开发单位信息化服务平台的意义,以及具体如何开发单位考勤管理系统的设计与实现平台,以此推动单位发展。本系统用了SpringBoot框架和Vue框架以及ElementUI,实现了前后端分离。SpringBoot框架使用大量的注解,大大减少了开发的工作量,使用Vue框架和ElementUI提供的许多组件,降低了前端页面开发的难度,再结合MySQL数据库,实现了系统的主要功能。 本课题的系统是面向单位全体员工的,并不只是提供给单位管理者使用,不仅能对单位信息进行管理,最重要的是还能给普通员工提供服务。本系统能使单位各方面信息的管理更加集中,更加信息化,有利于单位的管理,促进单位的发展。 关键词:SpringBoot技术;单位信息化;服务平台

2024-11-01

Tplus19.0DataDic数据字典

Tplus19.0DataDic数据字典

2024-09-05

Webman实现iframe框架下登录的详细步骤与代码实例.md

Webman实现iframe框架下登录的详细步骤与代码实例.md

2023-12-07

电子秤串口通信协议(RS232).doc

串行通讯接口 通讯接口采用RS232C,所有数据均为ASCII码,每组数据有10位组成,第1位为起始位,第10位为停止位,中间8位为数据位,无校验位。

2023-12-07

小程序完整demo:飞翔的小鸟:canvas实现,java后端(适用1221)

小程序完整demo:飞翔的小鸟:canvas实现,java后端(适用1221)

2023-11-19

k-push-master.7z

kpush服务器部署 拷贝 kpush/backend/kpush 至目标部署路径 拷贝 local_config_example.py 为 local_config.py 修改 local_config.py 中的配置,具体参看注释 添加后台管理员

2023-11-19

国企数字化转型:未来之路.pptx

面对全球数字化浪潮的压力 国企数字化需求紧迫 据IDC预测,到2025年,全球数据总量将达175ZB,是2018年的5倍,这迫使国企必须进行数字化转型 国企数字化可提升竞争力 麦肯锡研究显示,通过数字化转型,企业可以提升工作效率30%,降低成本15%,从而增强在全球市场的竞争力数字化转型的必要性 根据麦肯锡的研究,全球60%的企业已经开始或准备进行数字化转型 国企数字化水平提升 据IDC数据,2018年我国国有企业数字化投入占比为4.3%,到2020年已经升至5.7% 数字化提高运营效率 普华永道的调查数据显示,数字化可以提升企业运营效率20%-30%。 数字化增强竞争力 波士顿咨询公司的研究显示,数字化企业比非数字化企业的利润率高出26%。

2023-11-02

2023年中国直播电商机会洞察报告.pdf

2023年中国直播电商机会洞察报告

2023-10-23

2023美妆个护新增量赛道报告.pdf

在国际环境和国内环境的风云变幻下,消费行业就像是冲锋在最前列的先遣部队,始终是经济市场的重要引擎。尽管面临着宏观环境中的诸多不确定因素,消费行业的重要分支一一美妆个护行业依然在过去五年里取得了极为可观的增长 根据Euromonitor统计数据可知,2016年至2021年,中国美妆个护行业零售额由3391亿元增长至5686亿元,年复合增长率为10.89%。

2023-10-23

2023快递幸福感报告

前言 近3年,是生活方式发生巨大变化的3年: 居家时间被拉长,人们开始习惯在线上买菜、上网课、云办公...... 在过去的3年中,快递如同城市乡村的“毛细血管”,让不同地域的人得以连接,并不断为彼此输送“养分” 人们在网上买药、买菜、国物资,快递到家,就是幸福到家;发货/收货不便时,快递员按照人们的需求上门服务,快递畅通,生活就有安全感:线下见面受阻碍时,人们通过快递给家人朋友寄抗原、寄药品、寄礼物寄出一份快递,也传达了一份感情...... 2023年伊始,DT研究院联合京东快递发布《2023 快递幸福感报告》希望通过对不同人群快递心理和快递行为的调研,洞察3年来,人们生活中留下的时代印记。

2023-10-23

2023抖音电商全球购行业趋势白皮书.pdf

2023抖音电商全球购行业趋势白皮书.pdf 第一章 BLER0 跨境消费正当时 跨境进口消藏高增长。打开跨境电商上行空间生态基建日渐成贴。释做跨境电商发展潜力 消费升级呈现新态势。涌现品质生活新潮流 第二章 1 PE.o? 跨境消费新趋势 进口跨境电商用户人群特征 进口跨境电商用户消费趋势 进口跨境电商用户心着特点 跨境电商平台认知新超势 第三章 I PEE.05 新趋势下共建新生态 全域兴恩电商激发消费潜偿,增长飞轮时力把据新蓝海 共建品辟入华全路径,时力品销音一 共建正品和服务心智,提升消费体验 第四章PEE G 他山之石 品牌成长故事 抖音电商全球购对不同类型品牌的龄值 海外成熟品牌实践服例 海外新脱小众品牌实践率例

2023-10-19

google-search-results-java:谷歌搜索结果采集

这个 Java 包可以用于抓取和解析谷歌、必应和百度的搜索结果。你可以随意 fork 这个存储库以添加更多后端。 该项目是 Java 7 中 SerpApi 的实现。此代码依赖于 GSON 进行高效的 JSON 处理,将 HTTP 响应转换为 JSON 对象。 在测试中提供了一个示例,可以参考 src / test / java / GoogleSearchImplementationTest.java。 要求: - 运行环境:Java / JDK 8+(较旧版本的 Java 不支持 HTTPS 协议,SSLv3 有问题,导致 Java 引发 javax.net.ssl.SSLHandshakeException 异常)。 - 开发环境:Gradle 6.7+。 快速开始: - 在 Java 中开始这个项目。我们提供了一个完整的工作示例。

2023-10-19

Sublime Text3_64.rar

Sublime Text3 中文个人授权版Sublime Text 3 应用技巧和诀窍 1.选择 以下是一些Sublime Text选择文本的快捷键: Command + D 选中一个单词 Command + L 选中一行 Command + A 全选 Ctrl + Command + M` 选中括号内所有内容 (编写CSS或JS时非常实用) Sublime Text还支持一次选中多行的操作:Furthermore, Sublime Text brings lets us select multiple lines at once, which can significantly boost your productivity. There are several ways to perform this feature: Command 按住Command键再点击想选中的行 Command + Ctrl + G (选中部分文本时) 按此键选中所有相同文本 Command + D (选中部分文本时) 直接选中下一次出现的该文本 2.CSS排序 CSS属性的顺序一般不重要,因为无论何种顺序浏览器都能正确渲染。但排序所有的属性还是有助于代码的整洁。在Sublime Text中,选中CSS属性后按F5就可以按字母顺序排序。 也可以使用 CSSComb 等第三方插件,更详细的控制排序的方法。 3.命令面板(Command Palette) 使用命令面板可以快速完成多重任务。按Command + Shift + P调出面板,键入需要的命令即可。看以下的几个示例: ▼ 重命名文件 ▼ 设置文件为HTML语法 ▼ 插入代码片段 4.主要快捷键列表 在同时打开多个标签页时,可以用以下的热键切换: Command + T 列出所有的标签页 Command + Shift + ] 下一标签页 Command + Shift + [ 上一标签页 Command + Ctrl + P 切换侧边栏显示的工程 Ctrl+L 选择整行(按住-继续选择下行) Ctrl+KK 从光标处删除至行尾 Ctrl+Shift+K 删除整行 Ctrl+Shift+D 复制光标所在整行,插入在该行之前 Ctrl+J 合并行(已选择需要合并的多行时) Ctrl+KU 改为大写 Ctrl+KL 改为小写 Ctrl+D 选词 (按住-继续选择下个相同的字符串) Ctrl+M 光标移动至括号内开始或结束的位置 Ctrl+Shift+M 选择括号内的内容(按住-继续选择父括号) Ctrl+/ 注释整行(如已选择内容,同“Ctrl+Shift+/”效果) Ctrl+Shift+/ 注释已选择内容 Ctrl+Z 撤销 Ctrl+Y 恢复撤销 Ctrl+M 光标跳至对应的括号 Alt+. 闭合当前标签 Ctrl+Shift+A 选择光标位置父标签对儿 Ctrl+Shift+[ 折叠代码 Ctrl+Shift+] 展开代码 Ctrl+KT 折叠属性 Ctrl+K0 展开所有 Ctrl+U 软撤销 Ctrl+T 词互换 Tab 缩进 自动完成 Shift+Tab 去除缩进 Ctrl+Shift+↑ 与上行互换 Ctrl+Shift+↓ 与下行互换 Ctrl+K Backspace 从光标处删除至行首 Ctrl+Enter 光标后插入行 Ctrl+Shift+Enter 光标前插入行 Ctrl+F2 设置书签 F2 下一个书签 Shift+F2 上一个书签 5.跨文件编辑 同一个编辑操作可以在多个文件中同时重复。举个例子,多个文件中有同一段代码时,可用以下的步骤快速编辑: 按Command + Shift + F在Find框中输入待查找的代码。可按Command + E快速使用选择中的代码段。 在Where框中指定需要查找的文件范围,或填写<open files>表示查找目前打开的文件。 在Replace框中输入要替换成的代码,按Replace按钮批量替换。 6.文件爬虫 按Command + R可以列出文档中所有的CSS选择器。可以选择并立刻跳转查看。这个操作比使用一般的“查找”功能快得多。 7.拼写检查 如果你经常使用Sublime Text从事英文创作,那么启用拼写检查就非常有用处了。选择Preferences > Settings – User菜单,添加以下代码: "spell_check": true, 8.增强侧边栏 SideBarEnhancements插件有效地改进了Sublime Text的侧边栏。安装插件后在侧边栏上点击右键,可以找到一下新功能:在资源管理器中打开、新建文件、新建文件夹、以…打开、在浏览器中打开。 注:在浏览器中打开的热键是F12。 9.更换主题 Sublime Text的外观主题可以更换。Soda Theme就是一个不错的主题,可以在包管理器中安装。 如果要安装的主题并不在在线软件仓库中,也可以手动安装: 下载并解压缩主题包 点击菜单 Preferences > Browse Packages… 把主题文件夹复制到Packages文件夹中. 点击菜单 Preferences > Settings – Users 并加入以下代码:"theme": "Soda Light.sublime-theme"

2020-02-19

计算机软件说明书表格

受理号_____________ 分类号_____________ 登记号_____________ 计 算 机 软 件 说 明 书 中国版权保护中心制

2012-11-08

百度关键字瞬间排名到首页

百度关键字瞬间排名到首页 10到20分钟长尾关键字排名第一 瞬间收录的方法

2012-10-09

用DD-WRT搭建私有计费WiFi热点教程

用DD-WRT搭建私有计费WiFi热点教程

2012-07-04

基于Wiwiz HotSpot Builder的麦当劳WiFi热点Web认证方案

基于Wiwiz HotSpot Builder的麦当劳WiFi热点Web认证方案

2012-07-04

HotSpot 热点服务认证系统架设.doc

HotSpot 热点服务认证系统架设.doc

2012-07-04

Ros认证登录页7套模板.zip

说明: 适用Ros版本 2.x--4.x     测试环境: Ros3.30+WinXP+IE6.0     将zip压缩包解压后覆盖对应目录及文件,login.html为登录页面,images包含图片及css

2012-03-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除