第4步 Logistic回归

本文介绍了逻辑回归的基础,包括其在分类问题中的应用,数据要求,工作原理,并通过一个实例展示了如何使用逻辑回归预测用户是否购买SUV。讨论了模型参数如penalty和C的影响,以及模型评估中的混淆矩阵和相关评价指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

这是机器学习100步入门ML的第4步,我们终于来到了运用最多的的分类问题,从今天开始,逐一介绍常见的分类模型。当然,理解难度和代码复杂度相较之前会陡然加大,大家慢慢食用,反复食用,做到举一反三,融会贯通。
本文将探讨逻辑回归的概念、逻辑回归训练时的数据要求、逻辑回归的基本运行原理。文章的最后我们会做一个简单应用:使用逻辑回归预测用户是否会购买SUV。


一、什么是逻辑回归?

逻辑回归是一种用于解决分类问题的机器学习方法。它是一种基于概率思想的预测分析技术。分类算法逻辑回归用于预测分类因变量的似然性。逻辑回归中的因变量是二进制变量(分类变量),数据编码为 1(是、正常、存活等)或 0(否、异常、死亡等)。当然也可以是多分类变量,例如0、1、2;不过先拿二分类作为例子。
逻辑回归的目标是发现特征与特定结果的可能性之间的联系。例如,根据病人的临床症状、体征预测病人的预后,特定结果有两个值:预后好和预后差、或者存活和死亡。
有同学估计懵了,逻辑回归是分类还是回归。首先从输出上看,逻辑回归不太像回归,因为它的输出被限定在 0 和 1 之间。但

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jet4505

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值