文章目录
前言
这是机器学习100步入门ML的第4步,我们终于来到了运用最多的的分类问题,从今天开始,逐一介绍常见的分类模型。当然,理解难度和代码复杂度相较之前会陡然加大,大家慢慢食用,反复食用,做到举一反三,融会贯通。
本文将探讨逻辑回归的概念、逻辑回归训练时的数据要求、逻辑回归的基本运行原理。文章的最后我们会做一个简单应用:使用逻辑回归预测用户是否会购买SUV。
一、什么是逻辑回归?
逻辑回归是一种用于解决分类问题的机器学习方法。它是一种基于概率思想的预测分析技术。分类算法逻辑回归用于预测分类因变量的似然性。逻辑回归中的因变量是二进制变量(分类变量),数据编码为 1(是、正常、存活等)或 0(否、异常、死亡等)。当然也可以是多分类变量,例如0、1、2;不过先拿二分类作为例子。
逻辑回归的目标是发现特征与特定结果的可能性之间的联系。例如,根据病人的临床症状、体征预测病人的预后,特定结果有两个值:预后好和预后差、或者存活和死亡。
有同学估计懵了,逻辑回归是分类还是回归。首先从输出上看,逻辑回归不太像回归,因为它的输出被限定在 0 和 1 之间。但