给定一个整数数组 nums
,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [0]
输出:0
示例 4:
输入:nums = [-1]
输出:-1
示例 5:
输入:nums = [-100000]
输出:-100000
分治思路和算法
本题目和 剑指 Offer 42一样
其实动态规划为最优解:https://blog.csdn.net/qq_30457077/article/details/114851315
这个分治方法类似于**「线段树求解最长公共上升子序列问题」**的 pushUp 操作。 也许读者还没有接触过线段树,没有关系,方法二的内容假设你没有任何线段树的基础。当然,如果读者有兴趣的话,推荐阅读线段树区间合并法解决多次询问的「区间最长连续上升序列问题」和「区间最大子段和问题」,还是非常有趣的。
我们定义一个操作 get(a, l, r) 表示查询 a 序列 [l,r] 区间内的最大子段和,那么最终我们要求的答案就是 get(nums, 0, nums.size() - 1)。如何分治实现这个操作呢?对于一个区间 [l,r],我们取m= (l+r)/2,对区间 [l,m] 和 [m+1,r] 分治求解。当递归逐层深入直到区间长度缩小为 1 的时候,递归「开始回升」。这个时候我们考虑如何通过 [l,m][l,m] 区间的信息和 [m+1,r] 区间的信息合并成区间 [l,r] 的信息。
最关键的两个问题是:
我们要维护区间的哪些信息呢?
我们如何合并这些信息呢?
对于一个区间 [l,r],我们可以维护四个量:
lSum 表示 [l,r] 内以 l 为左端点的最大子段和
rSum 表示 [l,r] 内以 r 为右端点的最大子段和
mSum 表示 [l,r] 内的最大子段和
iSum 表示 [l,r] 的区间和
以下简称 [l,m] 为 [l,r] 的「左子区间」,[m+1,r] 为 [l,r] 的「右子区间」。我们考虑如何维护这些量呢(如何通过左右子区间的信息合并得到 [l,r] 的信息)?对于长度为 1 的区间 [i, i],四个量的值都和 nums[i] 相等。对于长度大于 1 的区间:
首先最好维护的是 iSum,区间 [l,r] 的 iSum 就等于「左子区间」的 iSum 加上「右子区间」的 iSum。
对于 [l,r] 的 lSum,存在两种可能,它要么等于「左子区间」的 lSum,要么等于「左子区间」的 iSum 加上「右子区间」的 lSum,二者取大。
对于 [l,r] 的 rSum,同理,它要么等于「右子区间」的 rSum,要么等于「右子区间」的iSum 加上「左子区间」的 rSum,二者取大。
当计算好上面的三个量之后,就很好计算 [l,r] 的 mSum 了。我们可以考虑 [l,r] 的 mSum 对应的区间是否跨越 m——它可能不跨越 m,也就是说 [l,r] 的 mSum 可能是「左子区间」的 mSum 和 「右子区间」的 mSum 中的一个;它也可能跨越 m,可能是「左子区间」的 rSum 和 「右子区间」的 lSum 求和。三者取大。
这样问题就得到了解决。
class Solution {
public:
struct Status {
int lSum, rSum, mSum, iSum;
//lSum 表示 [l,r] 内以 l 为左端点的最大子段和
//rSum 表示 [l,r] 内以 r 为右端点的最大子段和
//mSum 表示 [l,r] 内的最大子段和
//iSum 表示 [l,r] 的区间和
};
Status pushUp(Status l, Status r) {
int iSum = l.iSum + r.iSum;//区间 [l,r] 的 iSum
//就等于「左子区间」的iSum 加上「右子区间」的iSum。
int lSum = max(l.lSum, l.iSum + r.lSum);
//对于 [l,r] 的 lSum,
//存在两种可能,
//它要么等于「左子区间」的 lSum,
//要么等于「左子区间」的 iSum 加上「右子区间」的lSum,二者取大。
int rSum = max(r.rSum, r.iSum + l.rSum);//对于 [l,r] 的rSum,同理,
//它要么等于「右子区间」的 rSum,
//要么等于「右子区间」的 iSum 加上「左子区间」的rSum,二者取大。
int mSum = max(max(l.mSum, r.mSum), l.rSum + r.lSum);
//当计算好上面的三个量之后,就很好计算 [l,r] 的mSum 了。
//我们可以考虑 [l,r] 的 mSum 对应的区间是否跨越 m——它可能不跨越 m,
//也就是说 [l,r] 的 mSum 可能是「左子区间」的 mSum 和 「右子区间」的 mSum 中的一个;
//它也可能跨越 m,可能是「左子区间」的 rSum 和 「右子区间」的 lSum 求和。三者取大。
return (Status) {lSum, rSum, mSum, iSum};//返回值
};
Status get(vector<int> &a, int l, int r) {
if (l == r) {
return (Status) {a[l], a[l], a[l], a[l]};//长度为1
//当递归逐层深入直到区间长度缩小为 1 的时候,递归「开始回升」。
}
int m = (l + r) >> 1;//长度除2
//我们取 m = (l+r)/2
Status lSub = get(a, l, m);//左子区间
Status rSub = get(a, m + 1, r);//右子区间
return pushUp(lSub, rSub);//两个区间
}
int maxSubArray(vector<int>& nums) {
return get(nums, 0, nums.size() - 1).mSum;//最后结果
}
};