给定一个 没有重复 数字的序列,返回其所有可能的全排列。
示例:
输入: [1,2,3]
输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
预备知识
回溯法:一种通过探索所有可能的候选解来找出所有的解的算法。如果候选解被确认不是一个解(或者至少不是最后一个解),回溯算法会通过在上一步进行一些变化抛弃该解,即回溯并且再次尝试。
回溯
思路和算法
以[1,2,3]为例
第一层:i=0 first=0;
output=[1]
第二层:i=1 first=1;
output=[1,2]
第三层:i=2 first=2;
output=[1,2,3]
第二层:i=2 first=1;
swap(output[2], output[1]);//此时output[2]==2
output=[1,3]
第三层:i=2 first=2;
swap(output[2], output[2]);//此时output[2]==2
output=[1,3,2]
然后撤销:
swap(output[2], output[2]);//output=[1,3,2]
继续撤销:
swap(output[2], output[1]);//output=[1,2,3]
继续撤销:
swap(output[0], output[0]);//output=[1,2,3]
第一层:i=1 first=0;
以此类推......
class Solution {
public:
void backtrack(vector<vector<int>>& res, vector<int>& output, int first, int len){
// 所有数都填完了
if (first == len) {
res.emplace_back(output);
return;
}
for (int i = first; i < len; ++i) {
// 动态维护数组
swap(output[i], output[first]);
// 继续递归填下一个数
backtrack(res, output, first + 1, len);
// 撤销操作
swap(output[i], output[first]);
}
}
vector<vector<int>> permute(vector<int>& nums) {
vector<vector<int> > res;
backtrack(res, nums, 0, (int)nums.size());
return res;
}
};