【问题描述】输入整数N( 1 <= N <= 10 ),生成从1~N所有整数的全排列。
【输入形式】输入整数N。
【输出形式】输出有N!行,每行都是从1~N所有整数的一个全排列,各整数之间以空格分隔。各行上的全排列不重复。输出各行遵循"小数优先"原则, 在各全排列中,较小的数尽量靠前输出。如果将每行上的输出看成一个数字,则所有输出构成升序数列。具体格式见输出样例。
【样例输入1】1
【样例输出1】1
【样例说明1】输入整数N=1,其全排列只有一种。
【样例输入2】3
【样例输出2】
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
此题为递归回溯法的经典题目,代码如下
#include<bits/stdc++.h>
using namespace std;
//输出n的全排列
int n;
//数组大小
const int len = 11;
//将排列顺序存入数组a中
int a[len];
//判断数组a中有无此元素 初始化为false 表示a无此元素
bool line[len] = { false };
//全排列函数
void test(int index)//index表示位置 默认从第一个位置开始
{
// 判断是否越界
/*15行*/if (index == n + 1)
{
for (int i = 1; i <= n; i++)
{
cout << a[i] << ' ';
}
cout << endl;
return;
}
//遍历每个位置的可能出现的数据 i为这个位置上的数
/*25行*/for (int i = 1; i